Tìm tất cả các số nguyên tố x và y sao cho: x bình phương - 6y bình phương =1
1: Tìm tất cả các nghiệm nguyên của phương trình: \(x^3-3xy=6y-1\)
2: Tìm các số nguyên tố x, y sao cho \(x^2+3xy+y^2\)là số chính phương
a, tìm các chữ số x;y để B=x2016y chia cho 2;5 và 9 đều dư 1
b,tìm các số nguyên tố x,y sao cho:x bình phương+45=y bình phương
Tìm tất cả các số nguyên tố x, y sao cho: x^2 - 6y^2 = 1
\(x^2-6y^2=1\)
\(+,y=2\Rightarrow x^2=4.6+1=25\Rightarrow x=5\left(\text{thỏa mãn}\right)\)
\(+,y>2\Rightarrow x>2\Rightarrow x;y\text{ lẻ }\Rightarrow x^2;y^2\text{ chia 4 dư 1}\Rightarrow1\text{ chia 4 dư:}1-2=-1\left(\text{vô lí}\right)\)
Vậy: x=5;y=2
x=5 y=2
Tìm tất cả các bộ ba số nguyên tố liên tiếp sao cho tổng các bình phương của ba số này cũng là số nguyên tố?
Tìm tất cả bộ ba các số nguyên tố liên tiếp sao cho tổng bình phương của 3 số đó cũng là số nguyên tố.
Gọi 3 số nguyên tố liên tiếp cần tìm là p, q, r.
Ta có p2 + q2 + r2 = A là số nguyên tố.
Giả sử p < q < r
Do p, q, r là các số nguyên tố nên A = p2 + q2 + r2 > 3 nên
Nếu p, q, r đều không chia hết cho 3 khi đó p2 ; q2 ;r2 khi chia cho 3 dư 1 hoặc dư 2.
=> A chia hết cho hết cho 3 mà A > 3 nên A là hợp số trái với giả thiết (loại)
Vậy p chia hết cho 3, vì p nguyên tố nên p = 3 \(\Rightarrow\) q = 5 ; r = 7
Khi đó 32 + 52 + 72 = 83 là số nguyên tố
Vậy 3 số nguyên tố cần tìm chỉ có 3 ; 5 ; 7 thỏa mãn.
Đinh Tuấn Việt nhầm rồi:
Sửa lại: p; q;r là số nguyên tố > 3 => chúng có dạng 3k + 1 hoặc 3k + 2
=> p2; q2; r2 chia cho 3 đều dư 1
=> p2 + q2+ r2 chia hết cho 3 => A chia hết cho 3
.....................
đinh tuấn việt nhầm rồi ; 1 SNT ko chia hết cho 3 khi bình phương lên chia 3 dư 1 nên mới suy ra được là A chia hết cho 3
Tìm tất cả các số nguyên tố x,y sao cho x mũ 2 -6y2=1
Tìm tất cả các số nguyên tố x ,y sao cho : x^2-6y^2=1
x=5
y=2 nha
tìm tất cả các số nguyên tố x;y sao cho
x^2 - 6y^2 - 1 =0
a. tìm tất cả các số nguyên dương n sao cho 3n +63 là bình phương của một số nguyên dương .
b. tìm các số nguyên x,y thõa mãn x2 + 3y2 = ( 3y+1) x