Những câu hỏi liên quan
LM
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 5 2017 lúc 2:19

a) Đúng vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8

b) Sai vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8

c) Sai vì số chia hết cho 5 thì có chữ số tận cùng bằng 0 và 5

d) Đúng

Bình luận (0)
TM
Xem chi tiết
TH
22 tháng 1 2017 lúc 9:52

40 bài này trong báo toán tháng 11

Bình luận (0)
HN
Xem chi tiết
AH
6 tháng 7 2024 lúc 22:21

Lời giải:

$A=3-3^2+3^3-3^4+....-3^{2010}+3^{2011}$

$3A=3^2-3^3+3^4-3^5+...-3^{2011}+3^{2012}$

$\Rightarrow A+3A=3^{2012}+3$

$\Rightarrow 4A=3^{2012}+3$

$\Rightarrow A=\frac{3^{2012}+3}{4}$

b.

Từ phần a suy ra $4A-3=3^{2012}$

Do đó để $4A-3=81^x$ thì $3^{2012}=81^x$

$\Rightarrow 81^{503}=81^x$

$\Rightarrow x=503$

c.

$A=3+(-3^2+3^3-3^4)+(3^5-3^6+3^7)+(-3^8+3^9-3^{10})+...+(3^{2009}-3^{2010}+3^{2011})$

$=3+3^2(-1+3-3^2)+3^5(1-3+3^2)+3^8(-1+3-3^2)+...+3^{2009}(1-3+3^2)$

$=3+3^2(-7)+3^5.7+3^8(-7)+...+3^{2009}(-7)$

$=3+7(-3^2+3^5-3^8+....+3^{2009})$

$\Rightarrow A$ chia 7 dư 3.

d.

$4A=3^{2012}+3$

Có: $3^2\equiv -1\pmod {10}$

$\Rightarrow 3^{2012}=(3^2)^{1006}\equiv 1\pmod {10}$

$\Rightarrow 3^{2012}+3\equiv 4\pmod {10}$

$\Rightarrow 4A$ có tận cùng là 4

$\Rightarrow A$ có tận cùng là 1.

Bình luận (0)
NT
Xem chi tiết
NP
23 tháng 2 2016 lúc 14:17

Vì số lẻ nhân với số có tận cùng là 5 sẽ bằng tận cùng là 5 nên 1.3.5...............2045 có tận cùng là 5

Bình luận (0)
TK
23 tháng 2 2016 lúc 14:20

kết bạn với tớ nhé đi

Bình luận (0)
VD
Xem chi tiết
LX
Xem chi tiết
LK
11 tháng 11 2015 lúc 19:59

Gọi số phải tìm là abcdeghik

Ta có ab chia hết cho 2, để nhỏ nhất ta chọn ab = 12

Ta có 12c chia hết cho 3, để nhỏ nhất ta chọn c = 0

Ta có 120d chia hết cho 4, để nhỏ nhất ta chọn d = 0

Ta có 1200e chia hết cho 5, để nhỏ nhất ta chọn e = 0

Ta có 12000g chia hết cho 6, để nhỏ nhất ta chọn g = 0

Ta có 120000h chia hết cho 7 nên h = 3

Ta có 1200003i chia hết cho 8 nên i = 2

Ta có 12000032k chia hết cho 9 nên k = 1

Vậy, số đó là 120000321

Bình luận (0)
PL
Xem chi tiết
TT
23 tháng 2 2019 lúc 17:27

Giải

Nhận xét : các số tự nhiên có số mũ dạng 4k + 1 thì luôn có giá trị bằng chính nó

Từ nhận xét trên ta xét tổng các chữ tận cùng của tổng các lũy thừa trên

Ta có tổng sau có chữ số tận cùng bằng tổng ban đầu 

1 + 2 + 3 + 4 + 5 + 6 + ... + 2019 = 2019.(2019+1)/2

=2019.2020/2

Vì 2019.2020 có chữ số tận cùng bằng 0 nên 2019.2020/2 phải có chữ số tận cùng bằng 5 

Vậy chữ số tận cùng của 1^5 + 2^5 + 3^5 + ... + 2019^5  là 5

Bình luận (0)
NO
Xem chi tiết
NO
5 tháng 12 2018 lúc 19:35

Giúp mình với mình đang cần gấp

Bình luận (0)