Những câu hỏi liên quan
H24
Xem chi tiết
H24
6 tháng 11 2017 lúc 15:58

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

mong các bn đừng làm như vậy nah

Bình luận (0)
PL
Xem chi tiết
DH
1 tháng 6 2018 lúc 14:00

Ta có : \(\frac{x^3}{z+x^2}=\frac{x^3+xz-xz}{z+x^2}=x-\frac{xz}{z+x^2}\ge x-\frac{xz}{2x\sqrt{z}}=x-\frac{\sqrt{z}}{2}\ge x-\frac{z+1}{4}\) (Cosi)

Tương tự \(\hept{\begin{cases}\frac{y^3}{x+y^2}\ge y-\frac{x+1}{4}\\\frac{z^3}{y+z^2}\ge z-\frac{y+1}{4}\end{cases}}\)

\(\Rightarrow\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\)

Mà \(xy+yz+xz=3xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\Rightarrow x+y+z\ge3\)

\(\Rightarrow\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Bình luận (0)
TN
1 tháng 6 2018 lúc 18:52

bước cuối sai \(\frac{3}{2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) trong khi \(3\le x+y+z\) ?? :D

Bình luận (0)
TN
1 tháng 6 2018 lúc 18:53

à hay t sai ấy nhỉ :)) 

Bình luận (0)
NT
Xem chi tiết
BH
16 tháng 8 2019 lúc 22:35

Thiếu chứng minh điều kiện bằng j bạn ơi

Bình luận (0)
UI
16 tháng 8 2019 lúc 22:36

ban ghi ro de bai duoc ko ? mik ko hieu de bai

Bình luận (0)
LC
16 tháng 8 2019 lúc 22:37

? CM cái gì

Bình luận (0)
DP
Xem chi tiết
NL
31 tháng 8 2020 lúc 8:26

Bài làm:

Vì a,b,c khác 0 nên:

Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\)  (1) (chia cả 3 vế cho abc)

Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)

\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TK
15 tháng 11 2023 lúc 19:46

Bài làm:

Vì a,b,c khác 0 nên:

Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)

⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+���  (1) (chia cả 3 vế cho abc)

Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��

=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)

=> đpcm

Bình luận (0)
TK
15 tháng 11 2023 lúc 19:51

j

 

Bình luận (0)
NT
Xem chi tiết
NQ
13 tháng 11 2017 lúc 22:14

x^3+y^3+z^3=3xyz

<=>x^3+y^3+z^3-3xyz=0

<=>(x+y+z).(x^2+y^2+z^2-xy-yz-zx)=0

<=>x^2+y^2+z^2-xy-yz-zx=0 (vì x,y,z > 0 nên x+y+z > 0)

<=>2x^2+2y^2+2z^2-2xy-2yz-2zx=0

<=>(x-y)^2+(y-z)^2+(z-x)^2=0

<=>x-y=0;y-z=0;z-x=0

<=>x=y=z (ĐPCM)

k mk nha

Bình luận (0)
NG
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
H24
Xem chi tiết
H24
8 tháng 7 2016 lúc 21:15
(x+z-x)/x = (z+x-y)/y = (x+y-z)/z
Bình luận (0)
HP
8 tháng 7 2016 lúc 21:18

sao lại không thỏa mãn điều kiện hả bn??

Bình luận (0)
HN
8 tháng 7 2016 lúc 22:06

Đề bài : Cho 3 số x,y,z thoả mãn điều kiện \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\). Tính giá trị biểu thức \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

GIẢI : 

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

Nếu x+y+z=0 \(\Rightarrow A=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)Nếu x+y+z khác 0 => \(x=y=z\)

Thay vào A được : \(A=\left(1+1\right)\cdot\left(1+1\right).\left(1+1\right)=8\)

Bình luận (0)