Phân tích: a, ( a+1) (a+3)(a+5)(a+7)+15
phân tích đa thức sau thành phân tử:
A=(a+1).(a+3).(a+5).(a+7)+15
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
\(A=\left(a+1\right).\left(a+3\right).\left(a+17\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
\(=\left(a^2+8a+11-4\right)\left(a^2+8a+11+4\right)+15\)
\(=\left(a^2+8a+11\right)^2-4^2+15\)
\(=\left(a^2+8a+11\right)^2-1\)
\(=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
(a2+8a+12) = (a2+2a+6a+12)
= (a+2) (a+6)
Phân tích đa thức thành nhân tử: A=(a+1)(a+3)(a+5)(a+7)+15
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left[\left(a+1\right)\left(a+7\right)\right]\left[\left(a+3\right)\left(a+5\right)\right]+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt: \(a^2+8a+11=t\), khi đó pt trở thành:
\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\\ =\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(t=a^2+8a+7\) khi đó A thành:
\(t\left(t+8\right)+15=t^2+8t+15\)
\(=\left(t+3\right)\left(t+5\right)=\left(a^2+8a+7+3\right)\left(a^2+8a+7+5\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+10\right)\left(a+2\right)\left(a+6\right)\)
Ta có:
\(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(\left[\left(a+1\right)\left(a+7\right)\left(a+3\right)\left(a+5\right)\right]+15\)
\(\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(a^2+8a+7=t\)
\(\Rightarrow t\left(t+8\right)+15\)
\(=t^2+8t+15\)
\(=t\left(t+3\right)+5\left(t+3\right)\)
\(=\left(t+3\right)\left(t+5\right)\)
\(\Rightarrow\left[\left(a^2+8a+7\right)+3\right]\left[\left(a^2+8a+7\right)+5\right]\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+2a+6a+12\right)\)
\(=\left(a^2+8a+10\right)\left[a\left(a+2\right)+6\left(a+2\right)\right]\)
\(=\left(a^2+8a+10\right)\left(a+2\right)\left(a+6\right)\)
Phân tích đa thức thành nhân tử: A=(a+1)(a+3)(a+5)(a+7)+15
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left[\left(a+1\right)\left(a+7\right)\right]\left[\left(a+3\right)\left(a+5\right)\right]+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt : \(a^2+8+11=t\) khi đó pt trở thành :
\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
Chúc bạn học tốt !!!
A = (a+1)(a+3)(a+5)(a+7) + 15
A = [ (a+1) (a+7)] [(a+3) (a+5)] + 15
A= ( a2 + 8a + 7)( a2 + 8a + 15 ) + 15 (*)
Đặt a2 + 8a + 7 = t
=> A = t.(t+8) + 15
A = t2 + 8t + 15
A = t2 + 3t + 5t + 15
A = ( t +3).(t+5)
Thay A = ( t +3).(t+5) vào (*)
=> A = ( a2 + 8a + 7 + 3).( a2 + 8a + 7 + 5)
A = ( a2 + 8a + 10).( a2 + 8a + 12 )
A = ( a2 + 8a + 10).( a2 + 6a + 2a + 12 )
A = ( a2 + 8a + 10) ( a+6)(a+2)
a=(a+1)(a+3)(a+5)(a+7)+15
a=[ (a+1)(a+7) ] [(a+3)(a+5)] +15
a=(a²+8a+7)(a²+8a+15)+15
Đặt a²+8a+7=t
a=t.(t+8)+15
a=t²+8t+15
a=t²+3t+5t+15
a=(t+3).(t+5)
Hok tok
Phân tích đa thức sau thành nhân tử :A = (a + 1) ( a + 3) (a + 5) ( a + 7) + 15
A=( a +1)(a+3)(a+5)(a+7)+15
=(a+1)(a+7)(a+3)(a+5)+15
=(a2+8a+7)(a2+8a+15)+15
Đặt y=a2+8a+7 ta được :
y(y+8)+15=y2 + 8y +15
=y2 +3y+5y+15
=y(y+3) +5(y+3)
=(y+3)(y+5)
thay y=a2+8a+7 ta được
(a2+8a+7+3)(a2+8a+7+5)
=(a2+8a+10)(a2-2a-6a+12)
=(a2+8a+10)[a(a-2)-6(a-2)]
=(a2+8a+10)(a-2)(a-6)
Phân tích đa thức sau thành nhân tử:(a+1)(a+3)(a+5)(a+7)+15
Đặt \(M=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(M=\left[\left(a+1\right)\left(a+7\right)\right]\left[\left(a+3\right)\left(a+5\right)\right]+15\)
\(M=\left(a^2+7a+a+7\right)\left(a^2+5a+3a+15\right)+15\)
\(M=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(p=a^2+8a+11\)
\(\Rightarrow M=\left(p-4\right)\left(p+4\right)+15\)
\(\Rightarrow M=p^2-16+15\)
\(\Rightarrow M=p^2-1\)
\(\Rightarrow M=\left(p-1\right)\left(p+1\right)\)
Thay \(p=a^2+8a+11\)vào M, ta có :
\(M=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)\)
\(M=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
Phân tích đa thức thành nhân tử : (a+1)(a+3)(a+5)(a+7)+15
(a+1)(a+7)(a+3)(a+5)+15
=(a2+8a+7)(a2+8a+15)+15
=(a2+8a+11-4)(a2+8a+11+4)+15
=(a2+8a+11)2-42+15
=(a2+8a+11)2-1
=(a2+8a+11-1)(a2+8a+11+1)
=(a2+8a+10)(a2+8a+12)
Rút gọn biểu thức sau:A=(2x-3)(2x+3)-(x+5)2-(x-1)(x+2)
Phân tích đa thức sau thành nhân tử
A=(a+1)(a+3)(a+5)(a+7)+15
A=(a+1)(a+3)(a+5)(a+7)+15
A=[(a+1)(a+7)][(a+5)(a+3)]+15
A=(a2+8a+7)(a2+8a+15)+15
Đặt a2+8a = v
Ta có :
A=(v+7)(v+15)+15
A= v2+22v+105+15
A= v2+22v+ 120
A= v2+10v+12v+120
A=( v2+10v)+(12v+120)
A=[v(v+10)]+[12(v+10)]
A=(v+10)(v+12) (1)
Thay a2+8a = v vào (1)
A=(a2+8a+10)(a2+8a+12)
phân tích đa thức thành nhân tử
(a+1)(a+3)(a+5)(a+7)+15
=(a^2+8a+7)*(a^2+8a+15)+15
Đặt (a^2+8a+7)=t ta có
t*(t+8)+15=t^2+8t+15=t^2+3t+5t+15=(t+3)*(t+5)(*)
Thay t=a^2+8a+7 vào (*) là được
phân tích thành nhân tử\(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
(a+1)(a+7)(a+3)(a+5)+15
=(a^2+8a+7)(a^2+8a+15)+15
=(a^2+8a+11-4)(a^2+8a+11+4)+15
=(a^2+8a+11)^2 -4^2+15
=(a^2+8a+11)^2 -1
=(a^2+8a+11-1)(a^2+8a+11+1)
=(a^2+8a+10)(a^2+8a+12)
(a+1)(a+7)(a+3)(a+5)+15
=(a^2+8a+7)(a^2+8a+15)+15
=(a^2+8a+11-4)(a^2+8a+11+4)+15
=(a^2+8a+11)^2 -4^2+15
=(a^2+8a+11)^2 -1
=(a^2+8a+11-1)(a^2+8a+11+1)
=(a^2+8a+10)(a^2+8a+12)
phân tích đa thức thành nhân tử
1)(x^2+3x+1)(x^2+3x+2)-6
2)(x+1)(x+3)(x+5)(x+7)+15
3)a^3(b-c)+b^3(c-a)+c^3(a-b)
1)(x^2+3x+1)(x^2+3x+2)-6
Đặt t = x2 + 3x + 1
Khi đó PT có dạng:
t.(t + 1) - 6
= t2 + t - 6
= t2 - 2t - 3t - 6
= t.(t - 2) + 3.(t - 2)
= (t + 3).(t - 2)
= (x2 + 3x + 1 + 3).(x2 + 3x + 1 - 2)
= (x2 + 3x + 4).(x2 + 3x - 1)
\(1\hept{\begin{cases}\left(x^2+3x+2-1\right)\left(x^2+2x+2\right)-6\\\left(t-1\right)\left(t\right)-6\\t^2-t-6\end{cases}}.\) " đặt x^2+3x+2 = t
\(\hept{\begin{cases}t^2-\frac{2t.1}{2}+\frac{1}{4}-\left(\frac{24+1}{4}\right)\\\left(t-\frac{1}{2}\right)^2-\frac{25}{4}\\\left(t-\frac{1}{2}\right)^2-\frac{25}{4}\end{cases}}\)
\(\hept{\begin{cases}\left(t-\frac{1}{2}-\frac{5}{2}\right)\left(t-\frac{1}{2}+\frac{5}{2}\right)\\\left(t-\frac{7}{2}\right)\left(t+\frac{4}{2}\right)\\\left(t-\frac{7}{2}\right)\left(t+\frac{4}{2}\right)\end{cases}}\)
2) \(\hept{\begin{cases}\left\{\left(x+1\right)\left(x+7\right)\right\}\left\{\left(x+5\right)\left(x+3\right)\right\}+15\\\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\\t\left(t+8\right)+15\end{cases}}\)
\(\hept{\begin{cases}t^2+8t+15\\\left(t^2+8t+16\right)-1\\\left(t+4\right)^2-1\end{cases}}\Leftrightarrow\left(t+5\right)\left(t+4\right)\)
\(\hept{\begin{cases}a^3\left(b-c\right)+b^3\left(c-a+b-b\right)+c^3\left(a-b\right)\\a^3\left(b-c\right)-b^3\left(-c+a-b+b\right)+c^3\left(a-b\right)\\a^3\left(b-c\right)-b^3\left(a-b\right)-b^3\left(b-c\right)+c^3\left(a-b\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\left(b-c\right)\left(a^3-b^3\right)-\left(a-b\right)\left(b^3-c^3\right)\\\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+ab+c^2\right)\\\left(a-b\right)\left(b-c\right)\left(a^2+2ab+2b^2+c^2\right)\end{cases}}}\)