Những câu hỏi liên quan
H24
Xem chi tiết
BD
2 tháng 1 2017 lúc 10:24

Gọi 4 số tự nhiên liên tiếp là n, n + 1, n + 2, n + 3 (n ∈ Z).
Ta có n(n + 1)(n + 2)(n + 3) + 1 = n(n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N.
Vậy n(n + 1)(n + 2)(n + 3) là số chính phương

Bình luận (0)
HN
2 tháng 1 2017 lúc 10:55

Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\left(n\in N\right)\)

Theo đề bài, ta có :

       \(n\cdot\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)+1\)

\(=\left[n\cdot\left(n+3\right)\right]\cdot\left[\left(n+1\right)\cdot\left(n+2\right)\right]\)

\(=\left[n^2+3n\right]\cdot\left[n^2+3n+2\right]+1\)( * )

Đặt \(n^2+3n=t\)thì ( * ) \(=t\cdot\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vậy tích của 4 số tự nhiên liên tiếp cộng cho 1 là số chính phương 

Bình luận (0)
SL
23 tháng 1 2018 lúc 17:19

Gọi 4 số tự nhiên liên tiếp đó là n, n + 1, n + 2, n + 3

Ta có: 

n(n + 1)(n + 2)(n + 3) + 1

= [n(n + 3)] . [(n + 1)(n + 2)] + 1

= (n2 + 3n) . [(n + 1).n + (n + 1).2] + 1

= (n2 + 3n) . (n2 + n + 2n + 2) + 1

= (n2 + 3n) . [(n2 + 3n) + 2] + 1

= (n2 + 3n)2 + 2(n2 + 3n).1 + 12

= (n2 + 3n + 1)2

=> n(n + 1)(n + 2)(n + 3) + 1 là số chính phương

Vậy tích của 4 số tự nhiên liên tiếp cộng với 1 là số chính phương.

Bình luận (0)
DL
Xem chi tiết
N8
13 tháng 3 2017 lúc 11:14

DẠ EM CHỊU

Bình luận (0)
VN
13 tháng 3 2017 lúc 11:15

em cũng chịu

 luôn

Bình luận (0)
H24
13 tháng 3 2017 lúc 11:16

đầu hàng 2 tay 2 chân

Bình luận (0)
GT
Xem chi tiết
LV
Xem chi tiết
H24
15 tháng 1 2016 lúc 19:40

gọi 4 số tn liên tiếp là A=a(a+1)(a+2)(a+3)=>A=.....
Đặt a^2+3a+1=t =>A=t^2-1 (dpcm)

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
CT
10 tháng 11 2018 lúc 2:15

Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.

Bình luận (0)
DT
Xem chi tiết
TB
26 tháng 6 2015 lúc 7:28

c)

gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)

ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)

                                       \(=2.2.k.k+4k\)

                                       \(=4k^2+4k\)

mà \(4k^2+4k\) chia hết cho 4

=>\(2k.\left(2k+2\right)\) chia hết cho 4

Bình luận (0)
NT
20 tháng 9 2015 lúc 7:38

a)Goi 2 so tu nhien lien tiep la a;a+1

Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2

Neu a la so le:a+1 la so le

Vay tich2 so tu nhien lien tiep chia het cho 2

Bình luận (0)
TB
26 tháng 6 2015 lúc 7:19

a)

gọi 2 số tự nhiên liên tiếp là 2k;2k+1. ta có:

*nêu 2k lẻ=>2k+1 chẳn =>2k+1 chia hết cho 2

*nếu 2k+1 lẻ=> 2k chẳn =>2k chia hết cho 2

vậy DPCM 

Bình luận (0)
H24
Xem chi tiết
PT
Xem chi tiết
LC
29 tháng 3 2017 lúc 21:31

mk chịu , bó tay nhập y tế

Bình luận (0)