Chứng tỏ với mọi a, b thuộc N ta có:
Nếu cho ( a+5b) chia hết cho 7 thì (10a+b) chia hết cho 7
Chứng tỏ rằng nếu a + 5b chia hết cho 7 thì 10+b cũng chia hết cho 7, nếu 10a +b chia hết cho 7 thì
a+5b cũng chia hết cho 7
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Cmr nếu (a+5b) chia hết cho 7 với mọi a,b thuộc Z thì 10a+b cũng chia hết cho 7
Ta có : a+5b chia hết cho 7
=> 4.(a+5b) chia hết cho 5
=> 4a+20b chia hết cho 7
Mà 14a+ 21b chia hết cho 7
=> (14a+21b) - ( 4a+20b)chia hết cho 7
=> 10a+b chia hết cho 7
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
Cho 10a+b chia hết cho 7 (a,b thuộc N ). Chứng tỏ rằng a+5b chia hết cho 7
Ta có
10a+b=(10a+b+49b)-49b (a,b thuộc N)
Vì 10a+b chia hết cho 7
49b chia hết cho 7
=>10a+b+49b chia hết cho 7
10a+b+49b=10a+50b=10(a+5b)
Vì 10a+b+49b chia hết cho 7
10 không chia hết cho 7
=> a+5b chia hết cho 7(đpcm)
Vậy 10a+b chia hết cho 7 (a,b thuộc N ) thì a+5b chia hết cho 7
Xét tổng:
(10a+b)+4(a+5b)
=(10a+b)+4a+20b
=14a+21b
=7(2a+3b)\(⋮\)7(với mọi a,b\(\in N\)
Vì7(2a+3b)\(⋮\)7\(\Rightarrow\)(10a+b)+4(a+5b)\(⋮\)7
Ta có 10a+7\(⋮7\Rightarrow4\left(a+5b\right)⋮7\)Ma (4,7)=1
\(\Rightarrow a+5b⋮7\)
Ta có: 10a+b=10(a+5b)-49b
Vì a+5b chia hết cho 7
Suy ra : 10*a+5b) chia hết cho 7 và 49b cũng sẽ chia hết cho 7
Nên : 10(a+5b)-49b chia hết cho 7
=>10a+b chia hết cho 7
Ngược lại, vì 10a+b và 49b chia hết cho 7
=>10(a+5b) chia hết cho 7
Mà 10 khong chia hết cho 7 => a+5b chia hết cho 7
Chứng minh rằng: Nếu a,b thuộc N và a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Xét hiệu 5(10a+b) - (a+5b) = (50a+5b) - (a+5b)
=49a chia hết cho 7
suy ra:5(10a+b) - (a+5b) chia hết cho 7
mà a+5b chia hết cho 7 nên 10a+b chia hết cho 7
chứng minh rằng nếu a,b thuộc N và a+5b chia hết cho 7 thì 10a+b cungx chia hết cho 7
Ta có:
a+5b chia hết cho 7
=>10.(a+5b)chia hết cho 7
=>10a+50b chia hết cho 7
=>(10a+b)+49b chia hết cho 7(1)
Mà 49 chia hết cho 7 nên 49b chia hết cho 7(2)
Từ (1)và(2), ta có: 10a+b chia hết cho 7
Vậy nếu a,b\(\in\)N và a+5b chia hết cho 7 thì 10a+b cũng chia hết cho 7.
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
Với a,b là các số tự nhiên. Chứng tỏ rằng : a, nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
B, nếu a— 5b chia hết 17 thì 10a + b chia hết 17
C, nếu a — b chia hết cho 7 thì 4a + 3b chia hết 7
dễ lắm bn cứ nhân lên mk chỉ một abif r cứ dựa vào mà làm nhá
25.(3a+2b)+10a+b=85a+51b chia hết cho 17
vì 3a+2b chia hết cho 17 mà 25.(3a+2b)+10a+b=85a+51b chia hết cho 17=>10a+bchia hết cho 17