gia tri nho nhat cua bieu thuc a=(x^2+2)^2+2
tim gia tri nho nhat cua bieu thuc tim gia tri nho nhat cua bieu thuc x^4-4x^3+12x^2-16x+16
tim gia tri nho nhat cua bieu thuc A=2(x+3) mu 2
2(x+3)^2 >= 0
=> min A= 0 <=> x+3=0
<=> x=-3
Để biểu thức A đạt GTNN thì (x+3)2 phải có GTNN khi x+3=0
=>x =0-3
=>x =-3
Thay -3 vào biểu thức ta được 2(-3+3)2=0
Vậy GTNN của biểu thức là 0 khi x=-3
Để A min => 2(x+3)^2> =0
Vì A min => a= 0
ta có : 2(x+3)^2=0
=>(x+3)^2=0:2
=>(x+3)^2=0=0^2
=.x+3=0 =.x=-3
Vậy x=-3
gia tri nho nhat cua bieu thuc a=2*X+2015-3
gia tri nho nhat cua bieu thuc A=x^2+2x+5
A= x^2+2x +5
=x^2+2x+1+4
=(x+1)2 +4
=>Amin=4
\(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x^2+2.x.1+1^2\right)+4\)
\(=\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0=>\left(x+1\right)^2+4\ge4\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x+1\right)^2=0< =>x=-1\)
Vậy minA=4 khi x=-1
Tim gia tri cua x de bieu thuc P=(x^2-2x+1989)/x^2 dat gia tri nho nhat.
\(P=\frac{x^2-2x+1989}{x^2}\)
\(\Leftrightarrow Px^2=x^2-2x+1989\)
\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)
\(\Delta=4-4\left(1-P\right)1989\ge0\)
\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1989\)
Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989
Tìm gia tri nho nhat cua bieu thuc A= x^2-x
gia tri nho nhat cua bieu thuc |x+2|^3+2 la ...
công tử họ nguyễn sai bét rồi =2 cơ mà
giá trị nhỏ nhất của biểu thức |x+2|^3+2 là 5
gia tri nho nhat cua bieu thuc a=(x^2+1)^2+|25-9y|+7 la
(x^2+1)^2 >/ 1 (do x^2+1 >/ 1)
|25-9y| >/ 0
=>(x^2+1)^2+|25-9y|+7 >/ 8
=>Amin=7
dấu "=" xảy ra<=>x=0;y=25/9
nhé
gia tri nho nhat cua bieu thuc A=(x2+2)2+2 la