Những câu hỏi liên quan
DS
Xem chi tiết
CN
11 tháng 2 2020 lúc 20:57

Ta có \(\left|7x-5y\right|\ge0\) với \(\forall x;y\)

\(\left|2z-3x\right|\ge0\)với \(\forall x;z\)

\(\left|xy+yz+zx-2000\right|\ge0\)với \(\forall x;y;z\)

=>\(\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\ge0\) với \(\forall x;y;z\)

Mà A=0 \(\Leftrightarrow\left|7x-5y\right|=\left|2z-3x\right|=\left|xy+yz+zx-2000\right|=0\)

Lại có: \(\left|7x-5y\right|=0\Rightarrow7x-5y=0\Rightarrow7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\)

Tương tự, ta cx có: \(\left|2z-3x\right|=\frac{x}{2}=\frac{z}{3}\)

Và \(\left|xy+yz+zx-2000\right|=0\Rightarrow xy+yz+zx-2000=0\Rightarrow xy+yz+zx=2000\)

Từ đó ta tìm đc: \(\orbr{\begin{cases}x=20;y=28;z=30\\x=-20;y=-28;z=-30\end{cases}}\)

\(A\ge0\)mà A=0 <=>(x;y;z)\(\in\left\{\left(20;28;30\right),\left(-20;-28;-30\right)\right\}\)

Vậy GTNN của A=0 <=> (x;y;z)\(\in\left\{\left(20;28;30\right)\left(-20;-28;-30\right)\right\}\)

Hôm thứ 6 tuần trc cô giáo t vừa cho cái đề này để ôn thi, hình như cô in trên mạng hay sao ý ạ, cô giảng cho mình như nà, mik làm tắt( có gì ko hiểu ib nha), cồn nếu ko thì lên mạng tìm nha~

Bình luận (0)
 Khách vãng lai đã xóa
CX
23 tháng 3 2020 lúc 18:35

cho mk hỏi xíu

vì sao A lại bằng 0 vậy ??

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
HN
Xem chi tiết
H24
22 tháng 10 2021 lúc 18:02

Từ giả thiết suy ra\(7x=5y,2z=3x\)

\(\Rightarrow\frac{7}{5}x^2+\frac{3}{2}x^2+\frac{14}{15}x^2=2000\Rightarrow x=\sqrt{\frac{12000}{23}}\)

Từ đây tìm ra y,z

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
DC
Xem chi tiết
DC
Xem chi tiết
NH
Xem chi tiết
N3
12 tháng 4 2019 lúc 21:08

Hỏi nói một câu ....... bày đặt kiếm miễn phí

Bình luận (0)
NH
12 tháng 4 2019 lúc 21:09

thì trả lời xem nào

Bình luận (0)
N3
12 tháng 4 2019 lúc 21:12

mìk ko bt làm

Bình luận (0)
VA
Xem chi tiết

Ta có :
|7x - 5y| ≥ 0 
|2z - 3x| ≥ 0 
|xy + yz + zx - 2000| ≥ 0 
t² - t + 2014 = t² - 2t.(1/2) + 1/4 + 8055/4 = (t - 1/2)² + 8055/4 ≥ 8055/4 
Do đó: 
P = |7x-5y| + |2z-3x| + |xy+yz+zx-2000| + t^2 - t + 2014 ≥ 8055/4 
Suy ra 
Min P = 8055/4 giá trị đạt được khi 
{ 7x - 5y = 0 
{ 2z - 3x = 0 
{ xy + yz + zx - 2000 = 0 
{ (t - 1/2)² = 0 ---> t = 1/2 
Phương trình 1 ---> y = 7x/5 
Phương trình 2 ---> z = 3x/2 
Thay vào pt 3 được (7x²/5) + (21x²/10) + (3x²/2) = 2000 
<=> x² = 400 <=> x = ± 20 
Như vậy sẽ có 2 bộ (x, y, z, t) làm P nhỏ nhất là (± 20 ; ± 28 ; ± 30 ; 1/2)

Bình luận (0)
ND
6 tháng 1 2019 lúc 8:22

Ta có |7x – 5y|  0;  |2z – 3x| 0 và | xy + yz + zx - 2000|  0

Nên A = |7x – 5y| + |2z – 3x| +|xy + yz + zx - 2000| 0

Mà A = 0 khi và chỉ khi

|7x – 5y| = |2z – 3x| = |xy + yz + zx - 2000| = 0

Có: |7x – 5y| = 0 ó 7x = 5y ó  

 |2z – 3x| = 0 ó  

|xy + yz + zx - 2000| = 0 ó xy + yz + zx = 2000

Từ đó tìm được  

A  0, mà A = 0 ó (x,y,z) = (20;28;30) hoặc (x,y,z)= (-20;-28;-30)

Vậy MinA = 0 ó (x,y,z) = (20;28;30) hoặc (x,y,z)= (-20;-28;-30)

Bình luận (0)
LT
10 tháng 3 2019 lúc 21:22

Chờ iu chiu nặng chịu

Bình luận (0)
HK
Xem chi tiết