Cho a,b,c thuộc Z và a+b+c=4. C/m M= (a+b)(b+c)(c+a)-abc chia hết cho 4
Cho a,b,cx thuộc z thỏa mãn a+b+c chia hết cho 4. Chứng minh: C=(a+b)(b+c)(c+a)-abc chia hết cho 4
Cho a,b,cx thuộc z thỏa mãn a+b+c chia hết cho 4. Chứng minh: C=(a+b)(b+c)(c+a)-abc chia hết cho 4
1. cho n thuộc z
c/m a=n^4-n^2 chia hết cho 12
2.cho n thuộc z
c/m a= n^2(n^4-1) chia hết cho 60
3.cho n thuộc z
c/m a=2n(16-n^4) chia hết cho 30
4.cho a,b thuộc z
c/m M=ab(a^4-b^4) chia hết cho 30
Cho P = (a+b)(b+c)(c+a) - abc với a,b,c thuộc Z . Cmr nếu (a+c+b) chia hết cho 4 thì P chia hết cho 4
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
Cho P=(a+b)(b+c)(c+a)-abc với a,b,c thuộc Z. Chứng minh rằng: nếu a,b,c chia hết cho 4 thì P chia hết cho 4
Bài 1 Tìm n thuộc Z sao cho
a) (3n-9) chia hết (n-2)
b) (-4n+7) chia hết (2n+3)
c) (n mũ 2-2n+3) chia hết (n+3)
Bài 2 Tìm x thuộc Z sao cho
a) x mũ 3-x=0
b) (2x-5)-3(x+2)=-17
Bài 3 Cho a chia hết cho m, b chia hết cho m, c chia hết cho m.Với a,b,c,m thuộc Z chứng minh rằng (a+b-c) chia hết cho m
Bài 4 Cho góc A và góc B là 2 góc bù nhau. Biết hai góc A=ba góc B.Tính góc A, góc B
3n-9/n-2=3(n-2+7)/3(n-2)=1+7/n-2
=> n-2 thuộc ước của 7={+-1;+-7)
=> n-2 =-1=>n=1
n-2=1=>n=3
n-2=-7=> n=-5
n-2=7=>n=9 (mình không chắc đúng nha! :) )
b1: cmr nếu x+y+z=-3 thì (x+1)^3+(y+1)^3+(z+1)^3= 3(x+1)(y+1)(z+1)
b2: cho A+ (a^2+b^2-c^2)^2 -4a^2b^2
a) phân tích A thành nhân tử
b) cm nếu a,b,c là số đo độ dài các cạnh của 1 tam giác thì A<0
b3: cho đa thức M=(a+b)(b+c)(c+a)+abc
a/ phân tích M thành nhân tử
b/ cm nếu a,b,c thuộc z và a+b+c chia hết cho 6 thì (M-3abc) chia hết cho 6
b4: n thuộc z. cm n^3(n^2-7)^2 _ 36n chia hết cho 105
b5: xác định a,b để đa thức x^4- 3x^3+3x^2+ ax+b chia hết cho đa thức x^2-3x+4.
CÁC BẠN GIÚP MÌNH VỚI. CHIỀU PHẢI NỘP BÀI RỒI. HUHUHU :((((
1.Cho m thuộc Z . C/m :m^3 - 13m chia hết cho 6
2.Cho p và 10p + 1 là các số nguyên tố (p>3). C/m 5p+1 chia hết cho 6
3.C/m : A=88....8 (n c/số 8) - 9 +n chia hết cho 9 (n thuộc N*)
4.C/m :
a) A= 75(4^2016 + 4^2015 +...+ 4^2 + 5) + 25 chia hết cho 4^2017
b) B= 1/2 (7^2016^2015 - 3^92^94) chia hết cho 5
5.Cho (m,n thuộc N , n#0). C/m : 405^n + 2^405 + m^2 ko chia hết cho 10
P/s : Các bạn giúp mk nhoa !!! :))
Cho M = (a+b)(b+c)(c+a) - abc (với a,b,c là các số nguyên)
Chứng minh rằng: Nếu a+b+c chia hết cho 4 thì M chia hết cho 4
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4