Phân tích thành nhân tử
A) F(x) = (x^2 + x + 1)(x^2 +x+2) -12
B) g(x) = (x+1)(x+2)(x+3)(x+4) - 24
Phân tích đa thức thành nhân tử ( đặt biến phụ):
a) (x^2+x)^2-14(x^2+x) + 24
b) (x^2+x)^2 + 4x^2+4x-12
c) x^4 + 2x^3+ 5x^2+4x-12
d) (x+1)(x+2)(x+3)(x+4)+1
e) (x+1)(x+3)(x+5)(x+7)+15
f) (x+1)(x+2)(x+3)(x+4)-24
Bài 1 : Phân tích đa thức thành nhân tử
a ) x^8 + x^7 + 1
b ) x^5 + x + 1
c ) x^8 + x^4 + 1
d ) x^3 + x^2 +4
e ) x^4 + 2x^2 - 24
f ) x^3 - 2x - 4
Bài 2 : Phân tích đa thức thành nhân tử
a ) ( x^ + x )^2 -14(x^2 + x ) - 24
b ) ( x^2 + x )^2 + 4x^2 + 4x - 12
c ) x^4 + 2x^3 + 5x^2 + 4x - 12
d ) ( x+ 1 ) ( x+ 2 ) ( x+ 3 ) ( x + 4 ) +1
MỌI NGƯỜI GIẢI CHI TIẾT VÀ ĐÚNG THÌ EM SẼ TICK NHAA ... GIÚP EM VỚI EM ĐG CẦN GẤP Ạ !
\(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x^4+2x^2-24\)
\(=x^4+2x^2+1-25\)
\(=\left(x^2+1\right)^2-5^2\)
\(=\left(x^2+6\right)\left(x^2-4\right)\)
\(=\left(x^2+6\right)\left(x+2\right)\left(x-2\right)\)
các bạn giúp mik vs!!!
Phân tích đa thức thành nhân tử bằng phương pháp đổi biến
a) C= (x^2+x+1)(x^2+x+2)-12
b) D=(x-2)(x-3)(x-4)(x-5)-24
c) E=(x+2)(x+3)(x+4)(x+5)-24
d) F=x(x-1)(x-2)(x-3)-24
d )
=(x2-3x)(x2-3x+2)-24
đặt x2-3x+1=a ta đc
(a-1)(a+1)-24
=a2-1-24=a2-25
=(a-5)(a+5)
=(x2-3x+1+5)(x2-3x+1-5)
=(x2-3x+6)(x2-3x-4)
=(x2-3x+6)(x2-4x+x-4)
=(x2-3x+1)[x(x-4)+(x-4)]
=(x-4)(x+1)(x2-3x+1)
mấy câu kia làm tương tự nhé
phân tích thành nhân tử
a) (x^2 + x)^2 + 4(x^2 + x) - 12
b) (x + 1)(x + 2)(x + 3)(x + 4) - 24
a, Đặt x^2 + x = t
\(t^2+4t-12=\left(t-2\right)\left(t+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
b, Đặt x + 1 = t
\(t\left(t+1\right)\left(t+2\right)\left(t+3\right)-24=\left(t^2+t\right)\left(t^2+3t+2t+6\right)\)
\(\left(t^2+t\right)\left(t^2+5t+6\right)-24=t^4+5t^3+6t^2+t^3+5t^2+6t-24\)
\(=t^4+6t^3+11t^2+6t-24=\left(t^3+7t^2+18t+24\right)\left(t-1\right)\)
\(=\left(t-1\right)\left(t+4\right)\left(t^2+3t+6\right)=x\left(x+5\right)\left[\left(x+5\right)^2+3\left(x+5\right)+6\right]\)
Phân tích thành nhân tử(Phương pháp ẩn phụ):
a)(x^2+x)^2+4(x^2+x)-12
b)(x+1)(x+2)(x+3)(x+4)-24
(x2 + x)2 + 4(x2 + x) - 12
Đặt x2 + x = t, ta có:
t2 + 4t - 12
= t2 - 2t + 6t - 12
= t(t - 2) + 6(t - 2)
= (t - 2)(t + 6)
= (x2 + x - 2)(x2 + x + 6)
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= (x2 + 5x + 4)(x2 + 5x + 6) - 24
Đặt x2 + 5x + 4 = t, ta có:
t(t + 2) - 24
= t2 + 2t - 24
= t2 - 4t + 6t - 24
= t(t - 4) + 6(t - 4)
= (t - 4)(t + 6)
= (x2 + 5x + 4 - 4)(x2 + 5x + 4 + 6)
= x(x + 5)(x2 + 5x + 10)
Phân tích thành nhân tử(Phương pháp đặt ẩn phụ):
a)(x^2+x)^2+4(x^2+x)-12
b)(x^2+x+1)(x^2+x+2)-12
c)(x+1)(x+2)(x+3)(x+4)-24
phân tích đa thức thành nhân tử
1/(x+2)(x+3)(x+4)(x+5)-24
2/(x^2+x)^2+4(x^2+x)-12
3/(x^2+x+1)(x^2+x+2)-12
4/(a^2-4)(a^2+6a+5)
1/(x+2)(x+3)(x+4)(x+5)-24
=(x+2)(x+5)(x+3)(x+4)
=(x+2)(x-2+7)(x+3)(x-3+7)
=[(x+2)(x-2)+7x+14][(x+3)(x-3)+7x+21]
=(x2-4+7x+14)(x2-9+7x+21)
=(x2+10+7x)(x2+12+7x)
2/(x2+x)2+4(x2+x)-12
=(x2+x)2+4(x2+x)+22-16
=(x2+x+2)2-42
=(x2+x+2+4)(x2+x+2-4)
=(x2+x+6)(x2+x-2)
3/(x2+x+1)(x2+x+2)-12
=(x2+x+1)(x2+x+-1+3)-12
=(x2+x+1)(x2+x+-1)+3(x2+x+1)-12
=(x2+x)-1+3(x2+x)+3-12
=(x2+x)(x2+x+3)-10
làm đến đây thì mk bí, bạn giúp suy nghĩ nốt nha
4/nó là nhân tử sẵn rồi mà
\(3/\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+1\right)-12\)
\(=\left(x^2+x+1\right)^2+x^2+x+1-12\)
\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-3\left(x^2+x+1\right)-12\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-3\left(x^2+x+1+4\right)\)
\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
phân tích đa thức thành nhân tử:
a)2x^3-3x^2+3x-1
b)x^4-6x^3+12x^2-14x+3
c)3x^2-22xy-4x-8y+7y^2+1
d)x(x+1)(x+2)(x+3)+1
e)(x+2)(x+3)(x+4)(x+5)-24
g)x^4-8x+6;f)6x^4-11x^2+3
Phân tích đa thức thành nhân tử:
a, (x^2-x)^2+4(x^2-x)-12
b, (x+1)(x+2)(x+3)(x+4)-24
c,x^9-x^7+x^6-x^5-x^4+x^3-x^2+1
a/\(\left(x^2-x\right)^2+4\left(x^2-x\right)-12.\)
cho \(\left(x^2-x\right)=a\)
\(\Rightarrow a^2+4a-12\)
\(=a^2+6a-2a-12\)
\(=\left(a^2+6a\right)-\left(2a+12\right)\)
\(=a\left(a+6\right)-2\left(a+6\right)\)
\(=\left(a+6\right)\left(a-2\right)\)
\(=\left(x^2-x+6\right)\left(x^2-x-2\right)\)
b/ \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Gọi \(x^2+5x+5=a\)
\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=\left(a-1\right)\left(a+1\right)-24\)
\(=a^2-1-24\)
\(=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)
\(\Rightarrow\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
phân tích đa thức thành nhân tử chung = phương pháp đặt ẩn phụ
a, C= (x^2+x+1)(x^2+x+2)-12
b, D= (x+2)(x+3)(x+4)(x+5)-24
c, E=(x+a)(x+2a)(x+3a)(x+4a)+a^4
d, F= (x^2+y^2+z^2)(x+y+z)^2+(xy+yz+xz)^2
Hai câu đầu tham khảo
Câu hỏi của Bangtan Sonyeondan - Toán lớp 8 - Học toán với OnlineMath
c) \(E=\left(x+a\right)\left(x+2a\right)\left(a+3a\right)\left(x+4a\right)+a^4\)
\(=\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(a+3a\right)+a^4\)
\(=\left(x^2+5ax+4a^2\right)\left(a^2+5ax+6a^2\right)+a^4\)(1)
Đặt \(x^2+5ax+4a^2=t\)
\(\Rightarrow\left(1\right)=t\left(t+2a^2\right)+a^4\)
\(=t^2+2a^2t+a^4=\left(t+a^2\right)^2\)(2)
Mà \(x^2+5ax+4a^2=t\)
Nên \(\left(2\right)=\left(x^2+5ax+5a^2\right)^2\)