Tìm GTNN của bt : C=x^2+4x+4/x (x>0)
D=x^5 +2/x^2(x>0)
E=x^2+2/x^3 (x>0)
F=x^3+1/x^2
tìm x bt a) x^3=x^5 b) 4x.(x+1)=(x+1) c) x.(x-1)-2(1-x)=0 d) 2x.(x-2)-(2-x)^2 e) (x-3)^2+3-x=0 f) 5x.(x-2)-(2-x)=0
a) \(x^3=x^5\)
=> \(x^3-x^5=0\)
=> \(x^3\left(1-x^2\right)=0\)
=> \(\orbr{\begin{cases}x^3=0\\1-x^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(4x\left(x+1\right)=x+1\)
=> \(4x^2+4x-x-1=0\)
=> \(4x\left(x+1\right)-1\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(4x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{4}\end{cases}}\)
c) \(x\left(x-1\right)-2\left(1-x\right)=0\)
=> \(x\left(x-1\right)-\left[-2\left(x+1\right)\right]=0\)
=> \(x\left(x-1\right)+2\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
d) Kết quả ?
e) \(\left(x-3\right)^2+3-x=0\)
=> \(x^2-6x+9+3-x=0\)
=> \(x^2-7x+12=0\)
=> \(x^2-3x-4x+12=0\)
=> \(x\left(x-3\right)-4\left(x-3\right)=0\)
=> (x - 4)(x - 3) = 0
=> \(\orbr{\begin{cases}x=4\\x=3\end{cases}}\)
f) Tương tự
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
tìm x: part 1 : a,(x^3)^2-(x+1)(x-1)=1 b,(x-2)^2-3(x-2)=0 c,(x+2)(x^2-2x+4)-x(x^2+2)=15 d,(x+1)^2-(x+1)(x-2)=0 e,4x(x-2017)-x+2017=0 f,(x+4)^2-16=0 part 2: a,x^3+27+(x+3)(x-9)=0 b,(2x-1)^2-4x^2+1=0 c,2(x-3)+x^2-3x=0 d,x^2-2x+1=6x-6 e,x^3-9x=0
Tìm GTNN của các bt sau
C=(2x+5)(5x+14) tất cả trên 2 với x >0
D=(x2/1+4x)
E=x2-2X+1994 tất cả trên x2 với x khác 0
Tìm GTNN,GTLN của
P=4x+3 tất cả trên x2+1
a) A = (2x + 1)/(x² + 2)
Tìm min
ta có: A = (2x + 1)/(x² + 2)
=> 2A = (4x + 2)/(x² + 2)
= (4x + 2 + x² - x² + 2 - 2)/(x² + 2)
= [ (x² + 4x + 4) + (-x² - 2) ]/(x² + 2)
= [ (x + 2)² - (x² + 2) ]/(x² + 2)
= (x + 2)²/(x² + 2) - (x² + 2)/(x² + 2)
= (x + 2)²/(x² + 2) - 1
Ta có: (x + 2)² ≥ 0 và (x² + 2) > 0
=> (x + 2)²/(x² + 2) ≥ 0
=> (x + 2)²/(x² + 2) - 1 ≥ -1
=> 2A ≥ -1
=> A ≥ -1/2
Dấu bằng xảy ra <=> (x + 2)²/(x² + 2) = 0
<=> (x + 2)² = 0
<=> x + 2 = 0
<=> x = -2
Tìm max: A = (2x + 1)/(x² + 2)
= (2x + 2 - 1 + x² - x²)/(x² + 2)
= [ (x² + 2) + (-x² + 2x - 1) ]/(x² + 2)
= [ (x² + 2) - (x² - 2x + 1) ]/(x² + 2)
= [ (x² + 2) - (x - 1)² ]/(x² + 2)
= (x² + 2)/(x² + 2) - (x - 1)²/(x² + 2)
= 1 - (x - 1)²/(x² + 2)
Do (x - 1)² ≥ 0 và (x² + 2) > 0
=> (x - 1)²/(x² + 2) ≥ 0
=> -(x - 1)²/(x² + 2) ≤ 0
=> 1 - (x - 1)²/(x² + 2) ≤ 1
=> A ≤ 1.
Dấu bằng xảy ra <=> -(x - 1)²/(x² + 2) = 0
<=> -(x - 1)² = 0
<=> (x - 1)² = 0
<=> x - 1 = 0
<=> x = 1.
b) Tìm min: B = (8x + 3)/(4x² + 1)
= (8x + 4 - 1 + 4x² - 4x²)/(4x² + 1)
= [ (4x² + 8x + 4) + (-4x² - 1) ]/(4x² + 1)
= [ (4x² + 8x + 4) - (4x² + 1) ]/(4x² + 1)
= [ (2x + 2)² - (4x² + 1) ]/(4x² + 1)
= (2x + 2)²/(4x² + 1) - (4x² + 1)/(4x² + 1)
= (2x + 2)²/(4x² + 1) - 1
Do (2x + 2)² ≥ 0 và 4x² + 1 > 0
=> (2x + 2)²/(4x² + 1) ≥ 0
=> (2x + 2)²/(4x² + 1) - 1 ≥ -1
=> B ≥ -1
Dấu bằng xảy ra <=> (2x + 2)²/(4x² + 1) = 0
<=> (2x + 2)² = 0
<=> 2x + 2 = 0
<=> 2x = -2
<=> x = -1.
Tìm max: B = (8x + 3)/(4x² + 1)
= (8x + 4 - 1 + 16x² - 16x²)/(4x² + 1)
= [ (16x² + 4) + (-16x² + 8x - 1) ]/(4x² + 1)
= [ 4(4x² + 1) - (16x² - 8x + 1) ]/(4x² + 1)
= [ 4(4x² + 1) - (4x - 1)² ]/(4x² + 1)
= 4(4x² + 1)/(4x² + 1) - (4x - 1)²/(4x² + 1)
= 4 - (4x - 1)²/(4x² + 1)
Đến đây lập luận tương tự để chỉ ra maxB = 4 <=> x = 1/4
c) tìm min: C = 2(x² + x + 1)/(x² + 1)
= (2x² + 2x + 2)/(x² + 1)
= [ (x² + 1) + (x² + 2x + 1) ]/(x² + 1)
= [ (x² + 1) + (x + 1)² ]/(x² + 1)
= (x² + 1)/(x² + 1) + (x + 1)²/(x² + 1)
Lập luận tương tự để tìm ra min C = 1 <=> x = -1
tìm max: C = 2(x² + x + 1)/(x² + 1)
= (2x² + 2x + 2)/(x² + 1)
= (3x² - x² + 2x + 3 - 1)/(x² + 1)
= [ (3x² + 3) + (-x² + 2x - 1) ]/(x² + 1)
= [ 3(x² + 1) - (x² - 2x + 1) ]/(x² + 1)
= [ 3(x² + 1) - (x - 1)² ]/(x² + 1)
= 3(x² + 1)/(x² + 1) - (x - 1)²/(x² + 1)
Lập luận tương tự như trên để tìm ra max C = 3 <=> x = 1
TÌM GTNN CỦA CÁC BT SAU ;
a, B= (x-3)^2 + (x-5)^2
b, C=(2x-1)^2 - 3l2x-1l +2
c, D=(4x+1).(4+x) / x với x>0
giải pt
a 3x(x-1)+2(x-1)=0
b x^2-1-(x+5)(2-x)=0
c 2x^3 +4x^2-x^2+2=0
d x(2x-3)-4x+6=0
e x^3-1=x(x-1)
f (2x-5)^2 -x^2-4x-4=0
h (x-2)(x^2+3x-2)-x^3+8=0
a) 3x(x - 1) + 2(x - 1) = 0
<=> (3x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)
Vậy S = {-2/3; 1}
b) x2 - 1 - (x + 5)(2 - x) = 0
<=> x2 - 1 - 2x + x2 - 10 + 5x = 0
<=> 2x2 + 3x - 11 = 0
<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0
<=> (x + 3/4)2 - 97/16 = 0
<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)
Vậy S = {\(\frac{\sqrt{97}-3}{4}\); \(-\frac{\sqrt{97}-3}{4}\)
d) x(2x - 3) - 4x + 6 = 0
<=> x(2x - 3) - 2(2x - 3) = 0
<=> (x - 2)(2x - 3) = 0
<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
Vậy S = {2; 3/2}
e) x3 - 1 = x(x - 1)
<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0
<=> (x - 1)(x2 + x + 1 - x) = 0
<=> (x - 1)(x2 + 1) = 0
<=> x - 1 = 0
<=> x = 1
Vậy S = {1}
f) (2x - 5)2 - x2 - 4x - 4 = 0
<=> (2x - 5)2 - (x + 2)2 = 0
<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
<=> (x - 7)(3x - 3) = 0
<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy S = {7; 1}
h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0
<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0
<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0
<=> (x - 2)(x - 6) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
Vậy S = {2; 6}
\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)
\(3x.x-3x+2x-2=0\)
\(2x-2=0\)
\(2x=2\)
\(x=1\)
I) THỰC HIỆN PHÉP TÍNH
a) 2x(x^2-4y)
b)3x^2(x+3y)
c) -1/2x^2(x-3)
d) (x+6)(2x-7)+x
e) (x-5)(2x+3)+x
II phân tích đa thức thành nhân tử
a) 6x^2+3xy
b) 8x^2-10xy
c) 3x(x-1)-y(1-x)
d) x^2-2xy+y^2-64
e) 2x^2+3x-5
f) 16x-5x^2-3
g) x^2-5x-6
IIITÌM X BIẾT
a)2x+1=0
b) -3x-5=0
c) -6x+7=0
d)(x+6)(2x+1)=0
e)2x^2+7x+3=0
f) (2x-3)(2x+1)=0
g) 2x(x-5)-x(3+2x)=26
h) 5x(x-1)=x-1
IV TÌM GTNN,GTLN.
a) tìm giá trị nhỏ nhất
x^2-6x+10
2x^2-6x
b) tìm giá trị lớn nhất
4x-x^2-5
4x-x^2+3
bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi
sao nhìu... z p , đăq từq câu 1 thôy nha p
I) THỰC HIỆN PHÉP TÍNH
a) 2x(x^2-4y)
b)3x^2(x+3y)
c) -1/2x^2(x-3)
d) (x+6)(2x-7)+x
e) (x-5)(2x+3)+x
II phân tích đa thức thành nhân tử
a) 6x^2+3xy
b) 8x^2-10xy
c) 3x(x-1)-y(1-x)
d) x^2-2xy+y^2-64
e) 2x^2+3x-5
f) 16x-5x^2-3
g) x^2-5x-6
IIITÌM X BIẾT
a)2x+1=0
b) -3x-5=0
c) -6x+7=0
d)(x+6)(2x+1)=0
e)2x^2+7x+3=0
f) (2x-3)(2x+1)=0
g) 2x(x-5)-x(3+2x)=26
h) 5x(x-1)=x-1
IV TÌM GTNN,GTLN.
a) tìm giá trị nhỏ nhất
x^2-6x+10
2x^2-6x
b) tìm giá trị lớn nhất
4x-x^2-5
4x-x^2+3
Ôi trời sao lắm thế ít thôi bạn nên tách ra mà bạn cần gấp lắm à
đúng rồi pn. giúp mik đc bài nào cũng đc
Tìm x
a) x^3 - 16x = 0
b) x^4 - 2x^3 + 10x^2 - 20x = 0
c) (2x - 3 )^2 = (x+5)^2
d) x^2(x-1) - 4x^2 + 8x - 4 = 0
e) x^2 + 4x + 3 = 0
f) x^3 - x^2 = 4x^2 - 8x + 4
g) 2(x+3) - x^2 - 3x = 0
a) x3 - 16x = 0
x(x2 - 16) = 0
=> x = 0 hoặc x2 - 16 = 0
x = 4
Vậy x = 0 hoặc x = 4
b) x4 -2x3 + 10x2 - 20x = 0
x3 (x - 2) + 10x(x - 2) = 0
(x - 2)(x3 + 10x) = 0
=> x - 2 = 0 hoặc x3 + 10x = 0
x = 2 x(x2 + 10) = 0
+ TH1: x = 0
+ TH2: x2 + 10 = 0
x2 = -10 (vô lí)
Vậy x = 2 hoặc x = 0
c) (2x - 3)2 = (x + 5)2
(2x)2 + 2 . 2x . 3 + 32 = x2 + 2.x.5 + 52
4x2 + 12x + 9 = x2 + 10x + 25
4x2 + 12x - x2 - 10x = 25 - 9
3x2 + 2x = 16
x(3x + 2) = 16
Đến đây bạn làm nốt câu c nhé!