tìm n thuộc N
n+4 chia hết cho n
3n+7 chia hết cho n
27-5n chia hết cho 5
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
Tìm n thuộc N :
a, (5n+7) chia hết cho n
b, ( 9 + n ) chia hết cho (2+n)
c, 3n chia hết cho ( n + 1 )
d, ( 2015n + 5^100 +4 - n ) chia hết cho 5.
a,(5n+7)chia hết cho n
mà 5n chia hết cho n
=>7 chia hết cho n
=>n=1 hoặc n=7
b,(9+n)chia hết cho (2+n)
=>[(2+n)+7]chia hết cho n
=>7 chia hết cho 2+n
=>2+n=1 hoặc 2+n=7
mà n thuộc N=>n=7-2=5
Tìm n thuộc N để a) (n+4) chia hết cho n b) (3n+7) chia hết cho n c) (27 - 5n) chia hết cho n
tìm n thuộc N
n +4 chia hết cho n
3n +7 chia hết cho n
27 -5n chia hết cho n
3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
a)\(n+4⋮n\)
Vì \(n⋮n\)
Nên \(4⋮n\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Vậy \(n\in\left\{1;2;4\right\}\)
b) \(3n+7⋮n\)
Vì \(3n⋮n\)
Nên \(7⋮n\Rightarrow n\in\left(7\right)=\left\{1;7\right\}\)
Vậy \(n\in\left\{1;7\right\}\)
c) \(27-5n⋮n\)\(\left(0< n\le5\right)\)
Ta có : \(5n⋮n\Rightarrow\)phép chia này có số dư bằng 0
Đây là công thức chia hết nè mk chỉ bổ sung thôi chứ trong bài làm bạn đừng ghi thế này nha :
\(a⋮n;b⋮n\left(a\ge b;a\le b\right)\)thì \(a-b;b-a⋮n\)có nghĩa là cùng số dư nha bạn
Mà ta có 5n chia hết cho n
Nên \(27⋮n\Rightarrow n\inƯ\left(27\right)=\left\{1;3;9;27\right\}\)
Mà vì đầu đề bài điều kiện ta cho là \(0< n\le5\)
Nên \(n\in\left\{1;3\right\}\)
n + 4 chia hết cho n
vì n chia hết cho n
nên 4 chia hết cho n -> n thuộc Ư(4) = (1;2:4)
3n + 7 chia hết cho n
Vì 3n chia hết cho n
Nên 7 chia hết cho n-> n thuộc (7) = (1;7)
27- 5n chia hết cho n( 0 < n<5)
27- 5n chia hết cho n-> phép chia này có số dư bằng 0
A chia hết cho n, b chia hết cho n (a lớn hơn hoặc bằng b; a bé hơn hoặc bằng b)
Thì a – b; b – a thuộc n
Mà ta có 5n chia hết chon
Nên 27 chia hết cho n ->n thuộc Ư(27) = ( 1;3;9;27)
Mà 0 <n<5
Nên n thuộc (1;3)
tìm nn thuộc Z
5n+7 chia hết cho 3n+2
Ta có: n thuộc {3;-1}
=>n2 thuộc {32 ; (-1)2}
=>n.n thuộc {9;1}
Ta có: 5n+7 chia hết cho 3n+2
=>3(5n+7) chia hết cho 3n+2
=>15n+21 chia hết cho 3n+2
=>5(3n+2)+11 chia hết cho 3n+2
Mà 5(3n+2) chia hết cho 3n+2
=>11 chia hết cho 3n+2
=>3n+2 thuộc Ư(11)={1;11;-1;-11}
Mà 3n+2 chia 3 dư 2
=>3n+2 thuộc {11;-1}
=>3n thuộc {9;-3}
=>n thuộc {3;-1}
Vì 5n+7 chia hết cho 3n+2 nen 3(5n+7)=15n+21 chia hết cho 3n+2.
Vì 3n+2 chia hết cho 3n +2 nen 5(3n+2)=15n+10 chia hết cho 3n+2
=>(15n+21)-(15n+10)=15n+21-15n-10=11 chia hết cho 3n+2
=> 3n+2\(\in\)U(11)
Ma U(11)={1;11}
=>3n+2 có thể là 1 hoặc 11
Voi 3n+2=1
=>3n=1-2
3n=-1;3(loại)
Còn lại tương tự bn tự làm nhà
tìm n thuộc N để
n +4 chia hết cho n3n + 7 chia hết cho n27 5n chia hết cho na, n= 1,2,4
b,n= 1,7
Câu cuối là dấu j
Câu 1
n+4\(⋮\)n
n\(⋮\)
n+4-n\(⋮\)n
4\(⋮\)n
\(\Rightarrow\)n={1;2;4}
Câu 2
3n+7\(⋮\)n
3n\(⋮\)n
3n+7-3n\(⋮\)n
7\(⋮\)n
\(\Rightarrow\)n={1;7}
Câu 3 điền thêm dau đi
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$
Tìm n thuộc N
a)(n+4)chia hết cho (n-1)
b) (n+5) chia hết cho (n-2)
c) (5n+7) cia hết cho (3n+2)
dài lắm bạn ơi
nếu giải ra không ai k thì như không
a) Ta có: n + 4 = (n - 1) + 5 \(⋮\)n - 1
<=> 5 \(⋮\)n - 1
<=> n - 1 \(\in\)Ư(5) = {1; 5}
Lập bảng:
n - 1 | 1 | 5 |
n | 2 | 6 |
Vậy ...
còn lại tương tự
bài 1: tìm n thuộc z để
1) n+7 chia hết cho n+3
2) 2n+5 chia hết cho n+3
3) 3n+1 chia hết cho 1-2n
4) 3n+2 chia hết cho 11-5n
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
3) Đặt A = 3n + 1
=> 2A = 6n + 2 = -3(1 - 2n) + 5
Để A = 3n + 1 \(⋮\)1 - 2n <=> 2A \(⋮\)1 - 2n
Do -3(1 - 2n) \(⋮\)1 - 2n => 5 \(⋮\)1 - 2n
=> 1 - 2n \(\in\)Ư(5) = {1; -1; 5; -5}
Với: +)1 - 2n = 1 => 2n = 0 => n = 0
+)1 - 2n = -1 => 2n = 2 => n = 1
+) 1 - 2n = 5=> 2n = -4 => n = -2
+) 1 - 2n = -5 => 2n = 6 => n = 3
3) Đặt B = 3n + 2
=> 5B = 15n + 10 = -3(11 - 5n) + 21
Để B = 3n + 2 \(⋮\)11 - 5n <=> 5B \(⋮\)11 - 5n
Do -3(11 - 5n) \(⋮\)11 - 5n => 21 \(⋮\)11 - 5n
=> 11 - 5n \(\in\)Ư(21) = {1; -1; 3; -3; 7; -7; 21; -21}
Lập bảng :
11-5n | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 2 | 12/5(ktm) | 8/5(ktm) | 14/5(ktm) | 4/5(ktm) | 18/5(ktm) | -2 | 32(ktm) |
Vậy ...