chứng minh rằng : trong 3 số tự nhiên chỉ có 1 chữ số chia cho 3
Cho n là một số tự nhiên. Chứng minh rằng (2^n).n + 3^n chia hết cho 5
Khi và chỉ khi n có chữ số tận cùng là 1 hoặc 4.
Bài 1: Cho 8 số tự nhiên có 3 chữ số. Chứng minh rằng trong 8 số đó, tồn tại 2 số mà khi viết liên tiếp nhau thì tạo thành 1 số có 6 chữ số chia hết cho 7
Bài 2: Cho 3 chữ số khác nhau và khác 0. Lập tất cả các số tự nhiên có 3 chữ số gồm cả 3 chứ số ấy. Chứng minh rằng tổng của chúng chia hết cho 6 và 37
Bài 3: Một học sinh viết các số tự nhiên từ 1 đến abc(có gạch trên đầu). Bạn đó phải viết tất cả m chữ số. Biết rằng m chia hết cho abc, tìm abc
Mọi người chi tiết hộ nhé, tks
Chia 1 số tự nhiên (trong 8 số đó) cho 7 ta thu được 1 số dư
⇒ Khi chia cả 8 số đó cho 7 ta sẽ thu được 8 số dư
Mà một phép chia cho 7 có thể dư 0; 1; 2; 3; 4; 5; 6
⇒ Có ít nhất 2 trong 8 số chia cho 7 thì cùng số dư
⇒ Hiệu 2 số đó chia hết cho 7
Gọi 2 số đó là và (0 ≤ a, b , c, d, e, f ≤ 9; a, d khác 0)
Không mất tính tổng quát, giả sử >
Ta có:
= 1000 +
⇔ = 1001 – +
⇔ = 7 . 143 .
Đúng 0
Bình luận (0)
Cho abc là số tự nhiên có 3 chữ số. Chứng minh rằng abc chia hết cho 21 khi và chỉ khi a - 2b + 4c chia hết cho 21.
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
chứng minh rằng tổng 3 số liên tiếp chia hết cho 3 b)tổng 4 số tự nhiên liên tiếp không chia hết cho 4 c) trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 d)tổng 2 chữ số chẵn liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2
Ta có tổng 3 số tự nhiên liên tiếp là:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3
chứng minh rằng tổng 3 số liên tiếp chia hết cho 3 b)tổng 4 số tự nhiên liên tiếp không chia hết cho 4 c) trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 d)tổng 2 chữ số chẵn liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2
Ta có tổng 3 số tự nhiên liên tiếp là:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3
chứng minh rằng tổng 3 số liên tiếp chia hết cho 3 b)tổng 4 số tự nhiên liên tiếp không chia hết cho 4 c) trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 d)tổng 2 chữ số chẵn liên tiếp không chia hết cho 4
Trong 3 số nguyên liên tiếp có 1 số :3,1 số chia 3 dư 1,1 số chia 3 dư 2
\(\Rightarrow\)Tổng 3 số có số dư là 0+1+2=3 chia hết cho 3
chứng minh rằng tổng 3 số liên tiếp chia hết cho 3 b)tổng 4 số tự nhiên liên tiếp không chia hết cho 4 c) trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 d)tổng 2 chữ số chẵn liên tiếp không chia hết cho 4
a)Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2
ta có :a+(a+1)+(a+2)=3a+3=3.(a+1) chia hết cho 3
Vậy tổng ba số liên tiếp chia hết cho ba
b)Gọi 4 số tự nhiên liên tiếp là a,a+1,a+2,a+3
Ta có:a+(a+1)+(a+2)+(a+3)=4a=6 không chia hết cho 4
Vậy tổng 4 số tự nhiên liên tiếp không chia hất cho 4
Câu c và d làm tương tự
chứng minh rằng tổng 3 số liên tiếp chia hết cho 3 b)tổng 4 số tự nhiên liên tiếp không chia hết cho 4 c) trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 d)tổng 2 chữ số chẵn liên tiếp không chia hết cho 4
Cho 1 số tự nhiên chia hết cho 7 có 3 chữ số, trong đó chữ số hàng chục bằng chữ số hàng đơn vị. Chứng minh rằng tổng các chữ số chia hết cho 7
Giả sử : a+b+b=a+2b chia hết cho 7
Xét:
abb = 100a+11b = 98a+7b+2a+4b = 7(14a+b)+2(a+2b)
Mà 7.(14a+b) chia hết cho 7
và 2(a+2b) chia hết cho 7(vì a+2b chia hết cho 7)
=> abb chia hết cho 7 ( thỏa mãn đk đề bài )
Câu hỏi của Hoàng Hoàng Long⁀ᶦᵈᵒᶫ⁀2k8 - Toán lớp 6 - Học toán với OnlineMath