Những câu hỏi liên quan
KY
Xem chi tiết
MD
8 tháng 12 2015 lúc 16:43

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

Bình luận (0)
HN
Xem chi tiết
B1
14 tháng 8 2017 lúc 15:07

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

.

.

.

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

Bình luận (0)
Xem chi tiết
LC
25 tháng 7 2019 lúc 17:06

\(xy\left(x-y\right)+yz\left(y-z\right)+xz\left(z-x\right)\)

\(=xy\left(x-y\right)+yz\left[\left(y-x\right)-\left(z-x\right)\right]+xz\left(z-x\right)\)

\(=xy\left(x-y\right)-yz\left(x-y\right)-yz\left(z-x\right)+xz\left(z-x\right)\)

\(=\left(x-y\right)\left(xy-yz\right)-\left(z-x\right)\left(yz-xz\right)\)

\(=\left(x-y\right)\left(xy-yz\right)+\left(z-x\right)\left(xz-yz\right)\)

\(=\left(xy-yz\right)\left(x-y+z-x\right)\)

\(=\left(xy-yz\right)\left(-y+z\right)\)

Bình luận (0)
VS

mơn bn nha ^^

nh sáng nay lên lp thầy chữa bài thì kq nó k như z, cả cách lm nx :v

kq là: ( z - y )( x - z)( y - x )

Bình luận (0)
LC
28 tháng 7 2019 lúc 21:07

[ вơ đắйǥ ] вé เςë ⁀ᶜᵘᵗᵉ

Ukm cảm ơn nhé quên mất đoạn cuối vẫn phân tích đc nữa

Bình luận (0)
NK
Xem chi tiết
LC
Xem chi tiết
MT
4 tháng 9 2015 lúc 16:57

 

xy(x-y)+yz(y-z)+xz(x-z)

=y.[x.(x-y)+z.(y-z)]+xz(x-z)

=y.(x2-xy+zy-z2)+xz.(x-z)

=y.[(x2-z2)+(-xy+zy)]+xz.(x-z)

=y.[(x-z)(x+z)-y.(x-z)]+xz.(x-z)

=y.(x-z)(x+z-y)+xz.(x-z)

=(x-z)[y.(x+z-y)+xz]

=(x-z)(xy+yz-y2+xz)

 

Bình luận (0)
VT
Xem chi tiết
LH
28 tháng 9 2016 lúc 15:34

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 
= xy(x + y) + yz(y + z + x) + xz(x + z + y) 
= xy(x + y) + z(x + y + z)(y + x) 
= (x + y)(xy + zx + zy + z2
= (x + y)[x(y + z) + z(y + z)] 
= (x + y)(y + z)(z + x)

Bình luận (0)
KS
28 tháng 9 2016 lúc 15:36

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

Bình luận (0)
SM
Xem chi tiết
H24
13 tháng 8 2018 lúc 13:11

tao có \(xz\left(z-x\right)+yz\left(y+z\right)-xy\left(x+y\right)=xz\left(z-x\right)+yz\left(y+x+z-x\right)-xy\left(x+y\right)=xz\left(z-x\right)+yz\left(z-x\right)+yz\left(x+y\right)-xy\left(x+y\right)\)

\(\left(z-x\right)\left(xz+yz\right)+\left(x+y\right)\left(yz-xy\right)=\left(z-x\right)z\left(x+y\right)+\left(x+y\right)y\left(z-x\right)=\left(z-x\right)\left(x+y\right)\left(z+y\right)\)

nếu mình giải khó hiểu thì cho mình xin lỗi nhé

Bình luận (0)
H24
13 tháng 8 2018 lúc 13:15

\(xz\left(z-x\right)+yz\left(y+z\right)-xy+\left(x+y\right)\)

\(=xz^2-x^2z+yx\left(y+z\right)-xy\left(x+y\right)\)

\(=xz^2-x^2z+zy^2+z^2y-xy\left(x+y\right)\)

\(=xz^2-x^2z+zy^2+z^2y-x^2y-xy^2\)

P/s: ko chắc

Bình luận (0)
H24
13 tháng 8 2018 lúc 13:29

Wrecking Ball giải chưa đúng đâu nha 

Nhưng đây là bài lớp 8, bạn mới học lớp 7 nên mình k động viên thui nha ( mình ko có điểm hỏi đáp đâu )

Bình luận (0)
LH
Xem chi tiết
HN
30 tháng 9 2015 lúc 10:10

nhu the nay:

   ( xy( x + y )+ xyz )+( yz( y + z )+ xyz )+( xz( a +c )+ xyz)

= xy( x+y+z )+ yz( x + y + z )+ xz( x + y + z )

= ( x + y + z)( xy + yz +zx )

xong rui do dung thi ****.

Bình luận (0)
NK
Xem chi tiết
LH
28 tháng 7 2016 lúc 14:42

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

Bình luận (2)
TN
28 tháng 7 2016 lúc 14:43

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

Bình luận (0)
GT
Xem chi tiết
LD
29 tháng 6 2017 lúc 21:08

Cách 1 :  

Ta có : yz(y + z) + xz(z - x) - xy(x + y)

= yz(y + z) + xz2 - x2z - x2y - xy2

= yz(y + z) - x(y + z)(y - z) - x2(y + z)

= (y + z)(yz - xy + xz - x2)

= (y + z)[y(z - x) + x(z - x)] 

= (y + z) (z - x) (y + x)

Bình luận (0)