Tìm gí trị nhỏ nhất của A=|x-2012|+|x-2013|
cho biểu thức
A=/x-2010/+/x-2012/+/x-2014/
tìm x để biểu thức A có giá trị nhỏ nhất.tìm gí trị nhỏ nhất đó
A=/x-2010/+/x-2012/+/x-2014/
=/x-2012/+/2014-x/+/x-2010/>=/x-2012/+/2014-x+x-2010/=/x-2012/+4
lại có /x-2012/>=0
=>A>=4
=>min A=4 khi đó\(\hept{\begin{cases}x-2012=0\\\left(x-2012\right)\left(x-2014\right)< =0\end{cases}}< =>\hept{\begin{cases}x=2012\\2012< =x< =2014.\end{cases}}\)
=>x=2012 (tmđk)
Tìm giá trị nhỏ nhất của A=/x-2010/+/x-2012/+/y-2013/+/x-2014/+2011
Tìm giá trị nhỏ nhất của:
A=/x-2011/+/x-2012/+/x-2013/+/x-2014/+/x-2015/
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left(\left|x-2011\right|+\left|2015-x\right|\right)+\left(\left|x-2012\right|+\left|2014-x\right|\right)+\left|x-2013\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , dấu "=" xảy ra khi a,b cùng dấu. Ta có : \(\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\)
\(\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\)
\(\left|x-2013\right|\ge0\)
\(\Rightarrow A\ge4+2+0=6\)
Dấu "=" xảy ra khi \(\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}\) \(\Leftrightarrow x=2013\)
Vậy A đạt giá trị nhỏ nhất bằng 6 tại x = 2013
Tìm giá trị nhỏ nhất của biểu thức:
A=|x-2011|+|x-2012|+|x-2013|+|x-2014|+|x-2015|
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)
Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)
\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2011\le x\le2015\)
Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)
\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)
Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2012\le x\le2014\)
Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)
Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)
\(\Leftrightarrow x=2013\)
Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)
Hay \(A\ge6\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)
Vậy \(A_{min}=6\Leftrightarrow x=2013\)
Cho A = \(2013+\sqrt{2012-x}\)
Với giá trị nào của x thì A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Tìm giá trị nhỏ nhất của biểu thức:M=|x-2012|+|x-2013|
\(M=\left|x-2012\right|+\left|x-2013\right|=\left|x-2012\right|+\left|2013-x\right|\)
\(\ge\left|x-2012+2013-x\right|=1\)
Áp dụng công thức: \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Dấu "=" xảy ra <=> \(\left(x-2012\right).\left(2013-x\right)\ge0\)
\(\hept{\begin{cases}x-2012\ge0\\2013-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}\Rightarrow}2012\le x\le2013}\)
Vậy Mmin = 1 khi và chỉ khi x={2012;2013}
Tìm giá trị nhỏ nhất của biểu thức: B=/2012 - x/ + /2013 -x/
B = |2012 - x| + |2013 - x| = |2012 - x| + |x - 2013|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
B = |2012 - x| + |x - 2013| ≥ |2012 - x + x - 2013| = |- 1| = 1
Dấu "=" xảy ra <=> (2012 - x)(x - 2013) ≥ 0 <=> 2012 ≤ x ≤ 2013
Vậy gtnn của B là 1 <=> 2012 ≤ x ≤ 2013
Tìm giá trị nhỏ nhất của biểu thức: M=|2012-x|+|2013-x|
Ta có M = |2012 - x| + |2013-x| = |2012 - x|+|x-2013| \(\ge\)|2012-x+x-2013|
=|2012-2013|=|-1|=1
\(\Rightarrow\) Mmin=1
tìm giá trị nhỏ nhất của biểu thức : M = |2012-x|+|2013-x|
tìm giá trị nhỏ nhất của biểu thức ; B = (2012-x)+(2013-x)