cho biểu thức A = {2x-1} -{x-5}
tìm x biết A =5
lưu ý dấu ngoặc của 2x-1 là giá trị tuyệt đối
cho biểu thức A = {2x-1} -{x-5}
tìm x biết A =5
lưu ý dấu ngoặc của 2x-1 là giá trị tuyệt đối
Viết biểu thức sau khi không có dấu giá trị tuyệt đối
A= /4x+5/-(8+2x)
B=5.(3x+3)=5/x+1/
P/s: dấu / là dấu giá trị tuyệt đối nhé
Help me!
Máy tính của mk ko có dấu giá trị tuyệt đối nên coi dấu ngoặc là dấu giá trị tuyệt đối.
Tìm X:
a) (2x-1)=1-3x
b)(1-2x)=x+1
c)(1-3x)=1+5x
d)(4-2x)=3-x
a) | 2x - 1 | = 1- 3x
\(\orbr{\begin{cases}2x-1=1-3x\\2x-1=-\left(1-3x\right)\end{cases}}\)
\(\orbr{\begin{cases}2x-3x=1+1\\2x-1=-1+3x\end{cases}}\)
\(\orbr{\begin{cases}-x=2\\2x+3x=-1+1\end{cases}}\)
\(\orbr{\begin{cases}x=-2\\5x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}\)
b) | 1 - 2x | = x + 1
\(\orbr{\begin{cases}1-2x=x+1\\1-2x=-\left(x+1\right)\end{cases}}\)
\(\orbr{\begin{cases}-2x-x=1-1\\-2x+x=-1-1\end{cases}}\)
\(\orbr{\begin{cases}-3x=0\\-x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
tương tự
Tìm giá trị nhỏ nhất của biểu thức
/x+2/-5
Lưu ý dấu / là giá trị tuyệt đối
ta có /x-2/> hoặc = 0
=> /x-2/-5 lớn hơn hoặc bằng -5
dấu = xảy ra <=> x=2
Tìm GTNN của các biểu thức sau :
B= 2/4,5x-9/-18
C= (2x+1)^2 -1990
D= ( x+1)^2 + / y+5/-3/2
Lưu ý : / là giá trị tuyệt đối
\(B=2\left|4,5x-9\right|-18\)
Vì \(\left|4,5x-9\right|\ge0\forall x\)
=> \(2\left|4,5x-9\right|-18\ge-18\)
Dấu " = " xảy ra khi và chỉ khi |4,5x - 9| = 0 => 4,5x - 9 = 0 => 4,5x = 9 => x = 2
Vậy \(B_{min}=-18\)khi x = 2
\(C=\left(2x+1\right)^2-1990\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)
=> \(\left(2x+1\right)^2-1990\ge-1990\forall x\)
Dấu " = " xảy ra khi và chỉ khi (2x + 1)2 = 0 => 2x + 1 = 0 => x = -1/2
Vậy \(C_{min}=-1990\)khi x = -1/2
\(D=\left(x+1\right)^2+\left|y+5\right|-\frac{3}{2}\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\)
=> \(\left(x+1\right)^2+\left|y+5\right|\ge0\forall x\)
=> \(\left(x+1\right)^2+\left|y+5\right|-\frac{3}{2}\ge-\frac{3}{2}\forall x\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left|y+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-5\end{cases}}\)
Vậy \(D_{min}=-\frac{3}{2}\)khi \(\hept{\begin{cases}x=-1\\y=-5\end{cases}}\)
/x-1,3/+/2x-1/=0
tìm x
(lưu ý dấu " / "này là dấu giá trị tuyệt đối nha!)
|x - 1,3| + |2x - 1| = 0
Có |x - 1,3| \(\ge\)0
|2x - 1| \(\ge\)0
=> Để |x - 1,3| + |2x - 1| = 0
=> |x - 1,3| = 0 và |2x - 1| = 0
=> x - 1,3 = 0 và 2x - 1 = 0
=> x = 1,3 và 2x = 1
=> x = 1,3 và x = 0,5 (vô lí vì x không thể cùng lúc nhận 2 giá trị)
=> Không có giá trị của x thỏa mãn đề bài
Tìm giá trị nhỏ nhất của biểu thức sau:
A=(x-2y+1)^2 + /y+1/ + 17
(Lưu ý dấu "/" có nghĩa là dấu giá trị tuyệt đối nha!)
Có: \(\left(x-2y+1\right)^2\ge0\forall x;y\)
\(\left|y+1\right|\ge0\forall y\)
\(\Rightarrow\left(x-2y+1\right)^2+\left|y+1\right|\ge0\forall x;y\)
\(\Rightarrow\left(x-2y+1\right)^2+\left|y+1\right|+17\ge17\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y+1\right)^2=0\\\left|y+1\right|=0\end{cases}}\)
\(\left|y+1\right|=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)
\(\left(x-2y+1\right)^2=0\Leftrightarrow x-2y+1=0\Leftrightarrow x-2.\left(-1\right)+1=0\Leftrightarrow x+2+1=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy GTNN của A = 17 \(\Leftrightarrow\left(x;y\right)=\left(-3;-1\right)\)
Tìm x biết
/x+1/+/x+3/+/x+5/=7x
lưu ý: //là dấu giá trị tuyệt đối
Câu 1 : a) Tìm x \(\in\),biết |\(\frac{1}{4}\)+ x | = \(\frac{5}{6}\)
*Lưu ý : dấu "| |" là Giá trị tuyệt đối nha các cậu *
b) Tính giá trị của biểu thức A = 5x2 - 3x - 16 khi x = -2
c) Cho đơn thức A=4x2y2 ( -2x3y2) . Hãy thu gọn và chỉ ra hệ số,phần biến và bậc của đơn thức A
HELP ME !!!!
a)\(\left|\frac{1}{4}+x\right|=\frac{5}{6}\)
=> Có hai trường hợp
TH1: \(\frac{1}{4}+x=\frac{5}{6}\) TH2: \(\frac{1}{4}+x=-\frac{5}{6}\)
<=> \(x=\frac{5}{6}-\frac{1}{4}\) <=> \(x=-\frac{5}{6}-\frac{1}{4}\)
<=> \(x=\frac{10}{12}-\frac{3}{12}\) <=> \(x=-\left(\frac{10}{12}+\frac{3}{12}\right)\)
<=> \(x=\frac{7}{12}\) <=> \(x=-1\frac{1}{12}\)
Vậy: \(x=\frac{7}{12}\) hoặc \(x=-1\frac{1}{12}\)
b) \(A\left(x\right)=5x^2-3x-16\)
Thay \(x=-2\) vào đa thức A(x), ta có:
\(A\left(-2\right)=5\cdot\left(-2\right)^2-3\cdot\left(-2\right)-16\)
\(A\left(-2\right)=5\cdot4-3\cdot\left(-2\right)-16\)
\(A\left(-2\right)=20+6-16\)
\(A\left(-2\right)=10\)
Vậy giá trị của đa thức A(x) tại x =-2 là 10
c) \(A=4x^2y^2\left(-2x^3y^2\right)\)
\(A=\left[4\cdot\left(-2\right)\right]\left(x^2\cdot x^3\right)\left(y^2\cdot y^2\right)\)
\(A=\left(-8\right)x^5y^4\)
Đơn thức A có:
- Hệ số là: -8
- Phần biến là: \(x^5y^4\)
- Bậc là: 9
a)
1/4+x=5/6 hoặc -5/6
1/4+x=5/6 suy ra x=7/12
1/4+x=-5/6 suy ra x=-13/12
b) thay x=-2 vào
suy ra A=5.(-2)2-3.(-2)-16
=10
c) A=-8x5y4. Hệ số -8. Biến x5y4. Bậc 9
Bài dễ sao ko động não tí đi
Câu 1: |1/4+x|=5/6
TH1: 1/4+x=5/6
x=5/6-1/4=7/12
TH2: 1/4+x=-5/6
x=-5/6-1/4=-13/12
Vậy x=7/12 hoặc x=-13/12
b) thay x=-2 ta có:
A=5.(-2)^2-3.(-2)-16
A=5.4-3.(-2)-16
A=20+6-16=10
c) A=4x^2y^2(-2x^3y^2)
A= (-2.4).(x^2x^3) (y^2y^2)=-8x^5y^4
Đơn thức A có hệ số là -8
phần biến là: x^5y^4
có bậc là:9
Bài này quá dễ