So sánh
\(2^{90}\) và \(5^{36}\)
\(2^{27}\)và \(3^{18}\)
\(25^{50}\)\(v\text{à}\) \(2^{300}\)
So sánh :
\(10^{30}v\text{à}2^{100}\)
\(5^{300}v\text{à}3^{453}\)
\(29^{12}v\text{à}18^{17}\)
103và 2100
Ta có:1030=(103)10=100010
2100=(210)10=102410
Vì 1000<1024 nên 1030<2100
5300 và 3453
Ta có:5300=(52)150=25150
3453=(33)151=27151=27.27150
Vì 25 < 27.27 nên 5300<3453
nhớ k ch mình nhé
So sánh 2 lũy thừa
-3^50 và 27^33
-25^25 và 125^17
-2^500^3^300
-5^50 và 24^24
-7×2^100 và 2^103
-5^201 và 3^302
1. so sánh
\(2^{27}v\text{à}3^{18}\)
\(3^{21}v\text{à}2^{31}\)
\(2^{27}=2^{3.9}=8^9\)
\(3^{18}=3^{2.9}=9^9\)
Vì \(9^9>8^9\Rightarrow3^{18}>2^{27}\)
MK chỉ làm đc câu a) thui nha :
2^27 = 2^ 3.9 = 8^9
3^18 = 3^2.9=9^9
Vì 9^9 > 8^9 => 2^27 < 2 ^18
290 và 536
227 và 318
so sánh ạ
a) ta có: 290 = (25)18 = 3218
536 = (52)18 = 2518
=> ...
b) 227 = (23)9 = 89
318 = (32)9 = 99
=>...
So sánh :
a) 290 và 536
b) 227 và 318
a)
2^90 = (2^10)^9 = 1024^9
5^36 = (5^4)^9 = 625^9
Mà 1024^9 > 625^9 => 2^90 > 5^36
Vậy 2^90 > 5^36
b)
2^27 = (2^3)^9 = 8^9
3^18 = (3^2)^9 = 9^9
Mà 8^9 > 9^9 => 2^27 > 3^18
Vậy 2^27 > 3^18
k mik nha mn ! ^ - ^
Bt : So sánh :
A, 2^27 và 3^18
B, 3^225 và 5^150
C, 99^20 và 9999^10
D, 2^90 và 5^36
Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Vì \(9801< 9999\)nên \(9801^{10}=9999^{10}\)
Vậy \(99^{20}< 9999^{10}\)
a, 2^27 = 2^3.9 = 8^9
3^18 = 3^2.9 = 9^9
vì 8<9 => 8^9 < 9^9 => 2^27 < 3^18
So sánh:
a)\(3^{200}v\text{à}2^{300}\)
b) \(71^{50}v\text{à}37^{75}\)
c) \(\frac{2016014}{2017015}v\text{à}\frac{2016016014}{2017017015}\)
a) 3200=(32)100=9100 ; 2300=(23)100=8100
=> 9100>8100 hay 3200>2300
b) 7150=(712)25=504125 ; 3775=(373)25=5065325
=> 504125<5065325 hay 7150<3775
c)rút gọn
2016014/2017015=2014/2015
2016016014/2017017015=2014/2015
=> 2014/2015 = 2014/2015
1. So sánh các cặp số sau:
a) 290 và 536
b) 227 và 318
mình làm câu b thôi nhé câu a từ từ mình làm
b/ 2^27 và 3^18
Ta có 2^27= ( 2^3 )^9=8^9
3^18= (3^2)^9=9^9
vì 8^9<9^9
suy ra 2^27<3^18
\(2^{90}=2^{5.18}=\left(2^5\right)^{18}=32^{18}\)
\(5^{36}=5^{2.18}=\left(5^2\right)^{18}=25^{18}\)
Vì \(32^{18}>25^{18}\Rightarrow2^{90}>5^{36}\)
b,
\(2^{27}=2^{3.9}=\left(2^3\right)^9=8^9\)
\(3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)
Vì \(8^9< 9^9\Rightarrow2^{27}< 3^{18}\)
a) Ta có \(2^{90}=\left(2^5\right)^{18}=32^{18} \)
\(5^{36}=\left(5^2\right)^{18}=25^{18}\)
Vì 32^18 > 25^18
Nên \(2^{90}>5^{36}\)
b)
\(2^{27}=\left(2^3\right)^9=8^9\)
\(3^{18}=\left(3^2\right)^9=9^9\)
Vì 8^9 <9^9 Nên \(2^{27}< 3^{18}\)
bài 1 : so sánh mỗi cặp phân số bằng 2 cách : Quy đồng mẫu số,tử số.
a, 3/7 và 5/9.
b,6/12 và 4/9.
c,15/25 và 54/90.
d,25/30 và 75/28.
e,27/45 và 18/36.
bài 2 : tìm hai phân số lớn hơn 1/3 , bé hơn 2/3 sao cho 4 phân số này có tử số là các số tự nhiên liên tiếp.