Cho 10 số tự nhiên bất kì: a1;a2;a3;....;a10
CMR: có 1 số hoặc tổng một số các số liên tiếp chia hết cho 10
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho 10 số tự nhiên bất kì .a1,a2,....,a10.Chứng minh rằng thế nào cũng có 1 hoặc 1 tổng số các số tự nhiên liên tiếp nhau trong dãy chia hết cho 10
Bg: Đặt S1 = a1; S2 = a1+ a2; S3 = a1+a2+a3 ... ;S10 = a1+a2+...+a10. Xét 10 số S1,S2, ... S10 ta có 2 trường hợp như sau :
+) Nếu có 1 số Gk nào đó tận cg = 0 ( Sk = a1+a2 + ... ak, k từ 1 - 10) => tổng của k số a1,a2, ... ak chia hết cho 10 ( đpcm )
+) Nếu k có số nào trong 10 số S1, S2, ... S10 tận cg là 0 => chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cg giống nhau. Ta gọi 2 số đó là : Sm và Mn (1= <m<n=< 10 ) .... Sm = a1+a2 + ... a(m); Mn = a1+a2+ ...a(m)+ a(m1)+ a(m2) + ... + a(n ) .
=> Sn - Sm = a(m+1)+ a(m+2) + ....+ a(n) tận cg là 0 => Tổng của n-m số a( m+1),a(m+2), ..., a(n) chia hết cho 10 ( đpcm ) .
Cho a1 đến a10 là 10 số tự nhiên liên tiếp bất kì >1.
Cm : 1/a1^2 +1/a2^2 +...+1/a10^2 <1
cho 1 dãy số gồm 10 số tự nhiên bất kì a1,a2,a3,...,a10.chứng minh rằng có 1 tổng hoặc 1 số trên chia hết cho 10.
cho 10 số tự nhiên bất kì a1;a2;...;a10.Cmr trong 10 số đó có 1 hoặc nhiều số liên tiếp nhau tạo thành 1 tổng chia hết cho 10.
Đặt S1=A1
s2=A1+A2
..........
s10=A1+A2+...+A10
+Nếu 1 trong 10 tổng tre cha hêt cho 10 thì có dpcm
+Nếu ko có tổng nào chia hết cho 10 thì luôn tồn tại 2 tỏng chia 10 cùn só dư khi chia 10
suy ra Hiêu của 2 tỏng đó chia hết cho 10 (đó là tổng của 1 hay 1 só đo trong dãy
Cho 10 số tự nhiên bất kì: a1, a2,..., a10. CMR thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy chia hết cho 10
Cho 10 số tự nhiên bất kì :a1;a2;a3;...;a10.Chứng minh rằng thế nào cũng có một số hoặc tổng các số liên tiếp nhau trong dãy trên chia hết cho 10
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.
Cho 10 số tự nhiên bất kì :a1;a2;a3;...;a10.Chứng minh rằng thế nào cũng có một số hoặc tổng các số liên tiếp nhau trong dãy trên chia hết cho 10
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
Tick nha
tick nhé:http://olm.vn/hoi-dap/question/61032.html
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
* đi
cho 10 số tự nhiên bất kì: a1, a2, a3,..., a10.Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiép nhau trong dãy trên chia hết cho 10
Đặt S1 = a1 ; S2 = a1 + a2 ; S3 = a1 + a2 + a3 ; ... ; S10 = a1 + a2 + a3 + ... + a10
Xét 10 số S1 ; S2 ; S3 ; ... ; S10 ta có 2 trường hợp :
+) Nếu có một số Sk nào đó tận cùng bằng 0 (Sk = a1 + a2 + ... + ak, k từ 1 đến 10) ⇒ tổng của k số a1, a2 , ..., ak chia hết cho 10 (đpcm)
+) Nếu không có số nào trong số S1 ; S2 ; S3 ; ... ; S10 tận cùng bằng 0 ⇒ chắc chắn phải có ít nhất 2 số nào đó tận cùng giống nhau. Ta gọi 2 số đó là Sm và Sn (1 ≤ m < n>
Sm = a1 + a2 + a3 + ... + a(m)
Sn = a1 + a2 + a3 + ... +a(m) + a(m+1) + a(m+2) + ... + a(n)
⇒ Sn - Sm = a(m+1) + a(m+2) + ... +a(n) tận cùng bằng 0
⇒ Tổng của n - m số a(m+1) ; a(m+2) ; ... a(n) chia hết cho 10 (đpcm)
Vậy trong 10 số tự nhiên bất kì tồn tại 1 số hoặc tổng 1 số liên tiếp nhau trong dãy chia hết cho 10
Cho 10 số tự nhiên bất kì liên tiếp:a,a1,a2,a3,a4,a5,a6,a7,a8,a9. Chứng minh rằng thế nào cũng có một số hoacwjtoongr 1 số các số liên tiếp nhau trong dãy chia hết cho 10.
TH1: Tồn tại 1 số hoặc 1 tổng các số chia hết cho 10 thì bài toán giải quyết xong
TH2:Không tồn tại 1 số hoặc 1 tổng các số chia hết cho 10
Xét 10 tổng:
S1=a
S2=a+a1
....
S10=a+a1+...+a9
10 tổng trên chia 10 dc 10 số dư
1 tổng khi chia cho 10 đc 9 khả năng dư từ 1 đến 9
Mà 10 chia 9 =1 dư1
Theo nguyên lý Dirichlet thì tồn tại ít nhất 1+1=2 tổng có cùng số dư khi chia 10
Tức là hiệu 2 tổng chia hết cho 10
Giả sử 2 hiệu đó là Sm và Sn (m,n thuộc N*; m,n _<10; m>n)
Ta có Sm-Sn chia hết cho 10
=> a+a1+..+am-a-a1-..-an chia hết cho 10
=> a(n+1) +a(n+2) +... am chia hết cho 10
Vậy đpcm
Cho 10 số tự nhiên bất kì : a1 ; a2 ;......................a10. Chứng minh rằng thế nào cũng có một số hợ tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)