Những câu hỏi liên quan
NH
Xem chi tiết
DB
1 tháng 3 2018 lúc 17:44

Đặt \(A=x^{20}+x^{10}+1\)

\(x^{50}+x^{10}+1\)

\(=x^{50}-x^{20}+A\)

\(=x^{20}\left(x^{30}-1\right)+A\)

\(=x^{20}\left(x^{10}-1\right)A+A\)

\(=\left(x^{30}-x^{20}+1\right)A\)

\(\left(x^{30}-x^{20}+1\right)A⋮A\)

\(\Rightarrow\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)

Bình luận (0)
DD
Xem chi tiết
DD
Xem chi tiết
TT
Xem chi tiết
TT
5 tháng 6 2015 lúc 11:34

đỡ hơn chưa??? mong các bn giúp mình vs

 

Bình luận (0)
TL
5 tháng 6 2015 lúc 12:52

Vê trái: 

\(=\frac{2}{\left(x-1\right)\left(x+1\right)}+\frac{4}{\left(x-2\right)\left(x+2\right)}+...+\frac{20}{\left(x-10\right)\left(x+10\right)}\)

\(=\frac{\left(x+1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}\)

\(=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x-2}-\frac{1}{x+2}+...+\frac{1}{x-10}-\frac{1}{x+10}\)

\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\)

Vế phải:

\(=\frac{\left(x+1\right)-\left(x-10\right)}{\left(x-10\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-9\right)}{\left(x-9\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-1\right)}{\left(x-1\right)\left(x+10\right)}\)

\(=\frac{1}{x-10}-\frac{1}{x+1}+\frac{1}{x-9}-\frac{1}{x+2}+...+\frac{1}{x-1}-\frac{1}{x+10}\)

\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\) = vế phải

=> đpcm

 

Bình luận (0)
NL
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
LT
Xem chi tiết