Những câu hỏi liên quan
NL
Xem chi tiết
LT
25 tháng 3 2017 lúc 20:51

Muốn chia hết cho 10 thì tận cùng phải bằng 0

Ta có

5+4-1=0

=> 175+244-1321 chia hết cho 10

Bình luận (0)
ES
Xem chi tiết
LP
19 tháng 8 2023 lúc 17:04

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

Bình luận (0)
TN
Xem chi tiết
BT
Xem chi tiết
NH
1 tháng 9 2021 lúc 20:51

,!,!a,a,a,a

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
VH
Xem chi tiết
H24
13 tháng 7 2016 lúc 20:15

câu thứ 2

 a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17 
10a-50b=10a+b-51b 
51b chia hết cho 17 nên 10a+b chia hết cho 17

Bình luận (0)
SB
13 tháng 7 2016 lúc 20:15

51a : 17

=> 51a - a + 5b : 17

=> 50a + 5b : 17

=> 5 ( 10a + b ) : 17

=> 10a + b : 17

Bình luận (0)
OP
13 tháng 7 2016 lúc 20:17

Ta có : tích của 2 và 3 thì chia hết cho 17 

=> 10a = 2 x 5  x a + b chia hết cho 17

Những câu dưới bạn tự làm nha

Bình luận (0)
H24
Xem chi tiết
an
5 tháng 1 2016 lúc 15:51

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

Bình luận (0)
H24
6 tháng 11 2017 lúc 6:21

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

Bình luận (0)
DH
21 tháng 11 2021 lúc 21:22

a )  Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17

b )  Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17

Bình luận (0)
NL
Xem chi tiết
TC
Xem chi tiết
ST
29 tháng 1 2017 lúc 20:41

a, Giả sử 10a + b \(⋮\) 17         (1)

Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17

=> 24a + 16b \(⋮\) 17                             (2)

Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17

=> 10a + b + 24a + 16b \(⋮\) 17

=> (10a + 24a) + (16b + b) \(⋮\) 17

=> 34a + 17b \(⋮\) 17

=> 17(2a + b) \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\)17 (đpcm)

b, Giả sử 10a + b \(⋮\) 17        (1)

Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17

=> 7a - 35b \(⋮\) 17                  (2)

Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17

=> 10a + b + 7a - 35b \(⋮\) 17

=> (10a + 7a) + (b - 35b) \(⋮\) 17

=> 17a + (-34b) \(⋮\) 17

=> 17.[a + (-2)b] \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\) 17 (đpcm)

Bình luận (0)
HH
22 tháng 11 2021 lúc 9:43
23456789:123
Bình luận (0)
 Khách vãng lai đã xóa
NY
22 tháng 11 2021 lúc 20:35

không biết

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết