Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
MA
15 tháng 2 2018 lúc 16:40

Từ \(a+b+c=0\Leftrightarrow a+b=-c\)

                                    \(\Leftrightarrow\left(a+b\right)^3=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+3ab\left(-c\right)=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+c^3=3abc\)

Bình luận (0)
TQ
Xem chi tiết
an
27 tháng 12 2017 lúc 11:45

ta co :a + b+c=0

=>(a+b+c)^3= 0

<=>  a^3 + b^3 + c^3 + 3a^2b+3a^2c + 3b^2a+3b^2c + 3c^2a+3c^2b + 6abc =0

<=>(a^3+b^3+c^3) + (3a^2b+3a^2c+3abc ) +(3b^2a+3b^c +3abc) +(3c^2a+3c^b +3abc )  - 3abc=0

<=>(a^3+b^3+c^3) + 3a(ab+ac+bc) + 3b(ab+bc+ac) + 3c(ac+bc+ab) - 3abc=0

<=>(a^3+b^3+c^3) +3(ab+bc+ac)(a+b+c) -3abc=0

<=>(a^3+b^3+c^3) +3(ab+bc+ac).0 - 3abc =0 

<=> a^3+b^3+c^3 -3abc=0

=>a^3+b^3+c^3 =3abc (dpcm)

Bình luận (0)
H24
27 tháng 12 2017 lúc 12:43

Ta co

\(a^3+b^3+c^3-3abc\)

=\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

=\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

=\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)

Ma a+b+c=3

=>\(a^3+b^3+c^3-3abc=0\)

=>\(a^3+b^3+c^3=3abc\)(\(ĐPCM\))

Bình luận (0)
H24
27 tháng 12 2017 lúc 12:44

a+b+c=0 nhe minh ghi nham =3

Bình luận (0)
AN
Xem chi tiết
XO
7 tháng 7 2021 lúc 12:53

Ta có a3 + b3 + c3 = 3abc

<=> (a + b)3  - 3ab(a + b) + c3 = 3abc

<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0 

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\left(\text{tmđk}\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

Khi a2 + b2 + c2 - ab - ac - bc = 0 

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0 

<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0 

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(\text{loại}\right)\)

Vậy a + b + c = 0

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
HN
27 tháng 5 2016 lúc 21:10

\(a^3+b^3+c^3=3abc\)\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}=0\)

Vì a,b,c > 0 nên a+b+c > 0

Do đó : \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow}a=b=c\)

Bình luận (0)
VT
27 tháng 5 2016 lúc 21:04

1) có: a^3 + b^3 + c^3 - 3abc = 0
((a + b)3 + c^3( - 3ab(a + b) - 3abc = 0
<=>(a + b + c)((a + b)2 - (a + b).c + c2( - 3ab(a + b + c) = 0
<=>(a + b + c) (a2 + b2 + c2- ac - bc - ab( = 0

Từ đây cho nhận xét:
+ Nếu a + b + c = 0 có a3 + b3 + c3 = 3abc (I)
a + b + c = 0 
+ Nếu a^3 + b^3 + c^3 = 3abc thì 
a = b = c

Bình luận (0)
HP
27 tháng 5 2016 lúc 21:05

ak thôi CHTT có rồi,mn khỏi phải giải

Bình luận (0)
BH
Xem chi tiết
DK
5 tháng 8 2016 lúc 10:32

Ta có:

     \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\) (1)

Mà \(a+b+c=0\)

\(\left(1\right)\Rightarrow\frac{1}{2}.0.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\) 

Vậy: nếu \(a+b+c=0\) thì \(a^3+b^3+c^3-3abc=0\)

Chúc bạn học tốt và tíck cho mìk vs nha bùi thị thu hương!

Bình luận (0)
H24
4 tháng 9 2016 lúc 8:13

bùi thị thu hương khó ứa

Bình luận (0)
TT
3 tháng 6 2017 lúc 10:25
Ta có: a+b+c=0  a+b=-c a+c=-b b+c=-a Ta lại có VT: a^3+b^3+c^3-3abc=(a+b+c)^3-3(a+b)(b+c)(a+c)-3abc =(a+b+c)^3-3(-c)(-a)(-b)-3abc =(a+b+c)^3+3abc-3abc=0=VP
Bình luận (0)
LK
Xem chi tiết

Xét \(a^3+b^3+c^3-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà \(a+b+c=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\) 

Bình luận (0)
 Khách vãng lai đã xóa
VT
Xem chi tiết
DX
Xem chi tiết