x .(x-z)-y.(x+z)^3 PTĐTTNT
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
ptđttnt x3+y3+z3-3xyz
x3 + y3 + z3 - 3xyz = ( x3 + y3) + z3 - 3xyz
= ( x + y)3 - 3xy(x + y) + z3 - 3xyz = (x + y)3 + z3 - 3xy( x + y) - 3xyz
= (x + y)3 + z3 - 3xy(x + y + z)
= ( x + y + z )\(\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]\) - 3xy( x + y + z )
= ( x + y + z )( x2 + 2xy + y2 - xz - yz + z2 ) - 3xy( x + y + z )
= ( x + y + z )( x2 + 2xy + y2 - xz - yz + z2 - 3xy )
= ( x + y + z )( x2 + y2 + z2 - xy - xz - yz )
PTĐTTNT:
\(\text{a) }\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(\text{b) }2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
Làm cho mk đi @Ender Dragon Boy Vcl
(x−y+z)2+(z−y)2+2(x−y+z)(y−z)(x−y+z)2+(z−y)2+2(x−y+z)(y−z)
=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)
=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)
=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)
=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]
=(x−y+z)x+(z−y)(z−y−x+y−z)=(x−y+z)x+(z−y)(z−y−x+y−z)
=x2−xy+xz+(z−y)(−x)=x2−xy+xz+(z−y)(−x)
=x2−xy+xz−xz+xy=x2−xy+xz−xz+xy
=x2
PTĐTTNT
\(\text{a) }\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+xz\right)^2\)
\(\text{b) }2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
\(x;y;z\rightarrow q;h;p\)
\(=\left(q^2+h^2+p^2\right)\left(q^2+h^2+p^2+2qh+2hp+2qp\right)+\left(qh+hp+pq\right)^2\)
\(Dat:\hept{\begin{cases}q^2+h^2+p^2=f\\qh+hp+qp=g\end{cases}}\Rightarrow\left(p^2+h^2+q^2\right)\left(p+q+h\right)^2+\left(qh+pq+ph\right)^2\)
\(=f\left(f+2g\right)+g^2=f^2+2fg+g^2=\left(f+g\right)^2=\left(q^2+h^2+p^2+qh+hp+pq\right)^2\)
shitbo Cho đệ sửa lại bài SP chứ bài SP dài quá ạ:p
\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2+2xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)
Đặt \(x^2+y^2+z^2=a;xy+yz+zx=b\)
\(\Rightarrow a\left(a+2b\right)+b^2=a^2+2ab+b^2=\left(a+b\right)^2=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
Đặt \(x^4+y^4+z^4=a;x^2+y^2+z^2=b;x+y+z=c\)
Ta có:\(2a-b^2-2bc^2+c^4\)
\(=2a-2b^2+b^2-2bc^2+c^4\)
\(=2\left(a-b^2\right)+\left(b-c^2\right)^2\)
Lại có:
\(a-b^2=-2\left(x^2y^2+y^2z^2+z^2x^2\right);b-c^2=-2\left(xy+yz+zx\right)\)( Nhác quá hơi tắt xíu )
Thay vào ta được:
\(2\left(a-b^2\right)+\left(b-c^2\right)^2\)
\(=-4\left(x^2y^2+y^2z^2+z^2x^2\right)+4\left(x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)\right)\)
\(=4xyz\left(x+y+z\right)\)
câu 1: GPT : (x + y)2 = (x + 1)*(y - 1 )
câu 2 : PTĐTTNT:
A = (x - y) 3 + ( y - z)3 + ( z - x ) 3
B = ( a + b+ c) - ( a3 + b3 +c3 )
Bài 2:
a) Đặt: x - y =a; y - z = b; z - x = c thì a + b + c = 0
C/M: đẳng thức phụ: a3 + b3 + c3 = 3abc
Ta có: \(a+b+c=0\)
\(\Rightarrow\)\(a+b=-c\)
\(\Rightarrow\)\(\left(a+b\right)^3=-c^3\)
\(\Rightarrow\)\(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3=3abc\)
Vậy \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
I : PTĐTTNT
A= \(\left(x^2-6x\right)^2-2\left(x-3\right)^2-81\)
B=\(x^4+y^4+z^4-2x^2y^2-2y^2z^2-2x^2z^2\)
help me !!!
\(\left(x^2-6x\right)^2-2\left(x-3\right)^2-81=\left[\left(x^2-6x\right)^2-81\right]-2\left(x-3\right)^2=\left[\left(x^2-6x\right)^2-9^2\right]-2\left(x-3\right)^2=\left(x^2-6x+9\right)\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x+11\right)\)
=\(\left(x-3\right)^2\left(x^2-6x-11\right)\)
nha
tl nhanh cho mik nhá, mik đag cần gấp. Tks nhiều :)))
1, Rút gọn biểu thức sau:
a, (2x-3)(x+2)-2(x+1)^2
b,(x-2)^2+2(x-2)(2x+2)+4(x+1)^2
c,(x^2-2x+4)(x+2)-(x-1)^3+3(x-1)(x+1)
d,(x+y+z-t)^2-(-x-y-z+t)^2
e,(x+1)^3-3(x-2)(x+1)-(x^2+x+1)(x+1)
2,PTĐTTNT
a,x^2-9-x^2(x^2-9)
b, 9x^2-25y^2-6x+10y
c,x^2-8x-4y^2+16
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
a) (x+y)(x^2-y^2)+(y+z)(y^2-z^2)+(z+x)(z^2-x^2)
b) x^3(y-z)+y^3(z-x)+z^3(x-y)
c)x^3(z-y)+y^3(x-z)+z^3(y-z)+xyz(xyz-1)
Cho x,y,z > 0 và x^2 + y^2 + z^2 = 3. Tìm min của:
\(P=\dfrac{x^3}{x+y}+\dfrac{y^3}{y+z}+\dfrac{z^3}{z+x} \)
\(Q=\dfrac{x^3+y^3}{x+2y}+\dfrac{y^3+z^3}{y+2z}+\dfrac{z^3+x^3}{z+2x}\)
`P=x^3/(x+y)+y^3/(y+z)+z^3/(z+x)`
`=x^4/(x^2+xy)+y^4/(y^2+yz)+z^4/(z^2+zx)`
Ad bđt cosi-swart:
`P>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+xy+yz+zx)`
Mà `xy+yz+zx<=x^2+y^2+z^2)`
`=>P>=(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2))=(x^2+y^2+z^2)/2=3/2`
Dấu "=" xảy ra khi `x=y=z=1`
`Q=(x^3+y^3)/(x+2y)+(y^3+z^3)/(y+2z)+(z^3+x^3)/(z+2x)`
`Q=(x^3/(x+2y)+y^3/(y+2z)+z^3/(z+2x))+(y^3/(x+2y)+z^3/(y+2z)+x^3/(z+2x))`
`Q=(x^4/(x^2+2xy)+y^4/(y^2+2yz)+z^4/(z^2+2zx))+(y^4/(xy+2y^2)+z^4/(yz+2z^4)+x^4/(xz+2x^2))`
Áp dụng BĐT cosi-swart ta có:
`Q>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+2xy+2yz+2zx)+(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2)+xy+yz+zx))`
Mà`xy+yz+zx<=x^2+y^2+z^2`
`=>Q>=(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))+(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2)^2)/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2))/3=2`
Dấu "=" xảy ra khi `x=y=z=1.`