Những câu hỏi liên quan
LL
Xem chi tiết
TT
9 tháng 7 2015 lúc 13:30

5^2016 + 5^2015 + 5^2014 = 5^2014 ( 5^2 + 5 + 1) = 5^2014 . ( 25 + 5 + 1) = 5^2014 . 3 1 chia hết cho 31

Bình luận (0)
MT
9 tháng 7 2015 lúc 13:29

52016 +52015+52014

=52014.52+52014.5+52014.1

=52014.(52+5+1)

=52014.31

=>52016 +52015+52014 chia hết cho 31

Bình luận (0)
MH
9 tháng 7 2015 lúc 13:33

sao lúc nào trieu dang trước thang Tran sau mà thang Tran cũng được li-ke hết vậy

Bình luận (0)
NM
Xem chi tiết
NB
2 tháng 10 2016 lúc 8:51

Ta có A = \(1+5+5^2+...+5^{2015}\)

=> 5A = \(5+5^2+5^3+...+5^{2016}\)

=> 5A - A =  \(5+5^2+5^3+...+5^{2016}-1-5-5^2-...-5^{2015}\)

=> 4A = \(5^{2016}-1\)

=> A = \(\left(5^{2016}-1\right):4\)

=> A chia hết cho 31

Bình luận (0)
NT
Xem chi tiết
SN
15 tháng 10 2015 lúc 21:33

52016+52015+52014=52014(52+5+1)=52014.31 chia hết cho 31

=>đpcm

Bình luận (0)
HH
Xem chi tiết
KS
Xem chi tiết
AK
12 tháng 7 2018 lúc 19:04

a )  

Ta có : 

\(5^{2017}+5^{2016}+5^{2015}\)

\(=5^{2015}\left(5^2+5+1\right)\)

\(=5^{2015}.31⋮31\left(đpcm\right)\)

b ) 

Số lượng số dãy số trên là : 

\(\left(101-0\right):1+1=102\)( số )

Do \(102⋮2\)nên ta nhóm 2 số liền nhau thành 1 nhóm như sau : 

\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8\)

\(=8\left(1+7^2+...+7^{100}\right)⋮8\left(đpcm\right)\)

Bình luận (0)
DV
Xem chi tiết
LH
25 tháng 6 2016 lúc 10:01

\(5^{2016}+5^{2015}+5^{2014}\)

\(=5^{2013}.\left(5^3+5^2+5\right)\)

\(=5^{2013}.155\)

\(=5^{2013}.31.5\) chia hết cho 31

Bình luận (0)
TT
25 tháng 6 2016 lúc 10:08

\(5^{2016}+5^{2015}+5^{2014}\)

\(=5^{2014}\times\left(5^2+5+1\right)\)

\(=5^{2014}\times31\)

Vậy \(5^{2016}+5^{2015}+5^{2014}\) chia hết cho 31

Bình luận (0)
LH
Xem chi tiết
BA
14 tháng 8 2017 lúc 16:04

a, 5^2016+5^2015+5^2014=5^2014x(5^2+5+1)=5^2014x 31=> chia hết cho 31

b, 1+7+7^2+7^3+...7^101= (1+7)+(7^2+7^3)+...+(7^100+7^101)=1x(1+7)+7^2x(1+7)+...+7^100x(1+7)=1x8+7^2x8+...+7^100x8

                                        =8x(1+7^2+...7^100)=>chia hết cho 8

c,4^39+4^40+4^41=4^38x4+4^38x4^2+4^38x4^3=4^38x(4+16+64)=4^38x84=> chia hết cho 28

Bình luận (0)
BH
14 tháng 8 2017 lúc 16:05

a/ 52016+52015+52014=52014(52+5+1)=31.52014  => Chia hết cho 31

b/ 1+7+72+73+...+7101  Có tổng 101+1=102 số hạng. Nhóm 2 số hạng liên tiếp với nhau ta được 51 nhóm như sau:

(1+7)+(72+73)+...+(7100+7101)=(1+7)+72(1+7)+...+7100(1+7)

= (1+7)(1+72+...+7100)=8.(1+72+...+7100)  => Chia hết cho 8

c/ 439+440+441=439(1+4+42)=439.21=438.4.7.3=3.438.28

=> Chia hết cho  28

Bình luận (0)
H24
9 tháng 9 2017 lúc 16:57

a/ 52016+52015+52014=52014(52+5+1)=31.52014  => Chia hết cho 31

b/ 1+7+72+73+...+7101  Có tổng 101+1=102 số hạng. Nhóm 2 số hạng liên tiếp với nhau ta được 51 nhóm như sau:

(1+7)+(72+73)+...+(7100+7101)=(1+7)+72(1+7)+...+7100(1+7)

= (1+7)(1+72+...+7100)=8.(1+72+...+7100)  => Chia hết cho 8

c/ 439+440+441=439(1+4+42)=439.21=438.4.7.3=3.438.28

=> Chia hết cho  28

Bình luận (0)
LH
Xem chi tiết
LH
Xem chi tiết
PA
17 tháng 7 2016 lúc 15:54

52017 + 52016 + 52015 = 52015 x ( 52 + 5 + 1) = 52015 x (25 + 6) = 52015 x 31

Vậy 52017 + 52016 + 52015 chia hết cho 31.

Bình luận (0)
LA
17 tháng 7 2016 lúc 16:03

Ta có:  \(5^3\equiv1\left(mod31\right)\)

=> \(\left(5^3\right)^{671}\equiv1\left(mod31\right)\)

=> \(\begin{cases}\left(5^3\right)^{671}\cdot5^2\equiv25\left(mod31\right)\equiv25\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\equiv5^3\left(mod31\right)\equiv1\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\cdot5\equiv5^4\left(mod31\right)\equiv5\left(mod31\right)\end{cases}\)

=> \(\begin{cases}5^{2015}\equiv25\left(mod31\right)\\5^{2016}\equiv1\left(mod31\right)\\5^{2017}\equiv5\left(mod31\right)\end{cases}\)

=> \(5^{2015}+5^{2016}+5^{2017}\equiv25+5+1\left(mod31\right)\equiv0\left(mod31\right)\)

Vậy \(5^{2015}+5^{2016}+5^{2017}⋮31\left(đpcm\right)\)

Bình luận (0)
LR
17 tháng 7 2016 lúc 16:11

52017+52016+52015

5^2015.(5^2+5+1)

5^2015.31 chia hết cho 31 

=> Tổng trên chia hết cho 31 

 

Bình luận (0)