Cho x+y=a+b
và \(x^2+y^2=a^2+b^2\)
Chứng minh \(x^3+y^3=a^3+b^3\)
cho x^2/y^2=a/b và x^2+y^2=1 chứng minh x^8/a^3+y^8/b^3=1/(a+b)^3
bn lên mạng hoặc vào câu hỏi tương tự nha!
chúc bn hok tốt!
hahaha!
#conmeo#
a) cho x+y = a và x-y =b, tìm x3 + y3 .
b) cho x = y+2 và xy =2, chứng minh x4 + y4 = 2x2(x+1) -2y2(y-1)
c) cho a+b = a3 +b3 =1, chứng minh a2 + b2 = a4 +b4
Cho x+y=a+b; x^2+y^2=a^2+b^2. Chứng minh rằng x^3+y^3=a^3+b^3
ta có : \(x^2+y^2=a^2+b^2\Leftrightarrow x^2+2xy+y^2-2xy=a^2+2ab+b^2-2ab\)
\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(a+b\right)^2-2ab\) (vì : \(x+y=a+b\))
\(\Rightarrow-2xy=-2ab\Leftrightarrow xy=ab\)
ta có : \(x+y=a+b\Leftrightarrow\left(x+y\right)^3=\left(a+b\right)^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=a^3+3a^2b+3ab^2+b^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=a^3+b^3+3ab\left(a+b\right)\)
(vì : \(x+y=a+bvàxy=ab\))
\(\Rightarrow x^3+y^3=a^3+b^3\) (đpcm)
bài 1: tìm x;y;z biết: x/3=y/4 và x^2y^2=144
bài 2: cho a^2=bc chứng minh c/b = a^2+c^2/b^2+a^2
bài 3: cho a+b+c=a^2+b^2+c^2=1 và x/a=y/b=z/c. Chứng minh (x+y+z)^2=x^2+y^2+z^2
b3: Vì x:y:z= a:b:c
nên x/a= y/b=z/c
ADTCCDTSBN, ta có:
x/a=y/b=z/c= (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
x/a=y/b=z/c suy ra (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
suy ra x^2/a^2 = y^2/b^2 = z^2/c^2= (x+y+z)^2
ADTCCDTSBN, có:
(x+y+z)^2= x^2/a^2=...=z^2/c^2=x^2+y^2+z^2/a^2+b^2+c^2= x^2+y^2+z^2/1= x^2+y^2+z^2
Vậy...
Ai giải đc nhanh giúp mik vs
cho x^2+y^2=1 và x^4/a+y^4/b=1/a+b. Chứng minh x^6/a^3+y^6/b^3=2/(a+b)^3
Cho A = \(\dfrac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}.\left[1:\dfrac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3-y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
B = x - y
Chứng minh đẳng thức A = B
Tính giá trị của A, B tại x = 0; y = 0 và giải thích vì sao A ≠ B
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)
1. Chứng minh các đẳng thức :
a) (x + y)^2 - y^2 = x(x + 2y)
b) (x^2 + y^2) - (2xy)^2 = (x + y)^2 . (x - y)^2
c) (x + y)^3 = x(x - 3y)^2 + y(y - 3x)^2
2.Chứng minh rằng :
a) (a + b)^3 + (a - b)^3 = 2a(a^2 + 3b^2)
b) (a + b)^3 - (a - b)^3 = 2b(b^2 + 3a^2)
GIÚP MK VS Ạ!!!!!!! MK VIẾT HƠI KHÓ ĐỌC TÍ
Bài 1:
a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2=x^2+2xy=x\left(x+2y\right)\)
b) Sửa đề: \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\left(x+y\right)^2\)
c) \(x\left(x-3y\right)^2+y\left(y-3x\right)^2=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)
\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)
\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3\)
Bài 2:
a) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)
\(=2a\left(a^2+3b^2\right)\)
b) \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2b\left(b^2+3a^2\right)\)
a, \(\left(x+y\right)^2-y^2=x\left(x+2y\right)\Leftrightarrow x^2+2xy+y^2-y^2=x^2+2xy\)
\(\Leftrightarrow x^2+2xy=x^2+2xy\left(đpcm\right)\)
b, \(\left(x^2+y^2\right)-\left(2xy\right)^2=\left(x+y\right)^2\left(x-y\right)^2\)
\(\Leftrightarrow x^2+y^2-4x^2y^2=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)
\(\Leftrightarrow x^2+y^2-4x^2y^2=x^4-2x^2y^2+y^4\)đề sai ?
Bài 1:Tìm x biết:
1) (x-3)/7=y-5/5=z+7/3 và x+y+z=43
2) x+11/3=y+2/2=z+3/4 và x-y+z=2x
3) x-1/3=y-2/4=z+7/5 và x+y-z=8
4) x+1/2=y+3/4=z+5/6 và 2x+3y+4z=9
Bài 2: Cho a+b/a-b = c+a/c-a Chứng Minh
a^2= b.c
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
a) x=949/27
y=755/27
z=61/9
các bạn xem giúp mik đúng chx ạ, mik đặt là k
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
mày hỏi vả bài kiểm tra à thằng điên
1/ Tính giá trị nhỏ nhất (hoặc lớn nhất) của các biểu thức sau:
a, C= 3x^2 - 4x/ 1 + x^2 với mọi x.
b, D= x^2 + y^2 - x + 6y + 10 với mọi x, y.
2/ Tìm các số x và y, biết: x^3 + y^3 = 152; x^2 - xy = 19 và x - y = 2
3/ Cho x + y = 2; x^2 + y^2 = 20. Tính x^3 + y^3
4/ Cho a^2 + b^2 = 1. Chứng minh rằng: a^6 + 3.a^2.b^2 + b^6 = 1