bài 6 phân tích các đa thức sau thành nhân tử
a. 1-2y +y^2
b.(x+1)^2-25
c. 1-4x^2
d. 8-27x^3
Phân tích các đa thức sau thành nhân tử
a.1-2y+y^2
b.(x+1)^2 - 25
c.1-4x^2
d.8-27x^3
e.27+27x+9x^2+6xy
f.8x^3-12x^2y+6xy^2-y^3
g.x^3+8y^3
\(\left(x-1\right)^2-25\)
\(=x^2-2x+1-25\)
\(=x^2-2x-24\)
\(=x^2-6x+4x-24\)
\(=x.\left(x-6\right)+4.\left(x-6\right)\)
\(=\left(x+4\right).\left(x-6\right)\)
a, \(1-2y+y^2=\left(y+1\right)^2=\left(y+1\right)\left(y+1\right)\)
b, \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
c, \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
d, \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
a)=(1-y)2
b)=(x+1)2-52
=(x+1+5)(x+1-5)
=(x+6)(x-4)
c)=12-(2x)2
=(1+2x)(1-2x)
d)=23-(3x)3
=(2-3x)(4+6x+9x2)
e)=33+3.9.x+3.3.x2+x3
=(3+x)3
Dạng toán phân tích đa thức thành nhân tử
a. 1- 2y + y^2
b. (x + 1) ^2 - 25
c. 1 - 4x^2
d. 8 - 27x^3
a) \(1-2y+y^2=y^2-2y+1^2=\left(y-1\right)^2\)
b) \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2\)= \(\left(x+1+5\right).\left(x+1-5\right)=\left(x+6\right).\left(x-4\right)\)
c) \(1-4x^2=1^2-\left(2x\right)^2=\left(1+2x\right).\left(1-2x\right)\)
d) \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right).\left(4+6x+9x^2\right)\)
Phân tích đa thức thành nhân tử
a, 1-4x^2
b, 8-27x^3
c, 27+27x+9x^2+x^3
d, 8x^3-12x^2y+6xy^2-y^3
e, x^2+4x-5
Bài làm:
a, 1-4x2
=1-(2x)2
=(1-2x).(1+2x)
b, 8-27x3
=23-(3x)3
=(2-3x).(4+6x+9x2)
Các câu còn lại bạn dùng hằng đẳng thức là phân tích được ra thôi
1 - 4x^2
= 1^2 - ( 2x )^2
= ( 1 - 2x ) ( 1 + 2x )
8 - 27x^ 3
= 2^3 - ( 3x )^3
= ( 2 - 3x ) [ 2^2 + 2 * 3x + ( 3x )^2 ]
= ( 2 - 3x ) ( 4 + 6x + 9x^2 )
= ( 2 - 3x ) ( 9x^2 + 6x + 4 )
27 + 27x + 9x^2 + x^3
= x^3 + 9x^2 + 27x + 27
= x^3 + 3x^2 + 6x^2 + 18x + 9x + 27
= x^2 ( x + 3 ) + 6x ( x + 3 ) + 9 ( x + 3 )
= ( x + 3 ) ( x^2 + 6x + 9 )
= ( x + 3 ) ( x + 3 )^2
= ( x + 3 )^3
x^2 + 4x - 5
= x^2 - x + 5x - 5
= x ( x - 1 ) + 5 ( x - 1 )
= ( x + 1 ) ( x - 5 )
bài 1: phân tích các đa thức sau thành nhân tử bằng 3 phương pháp đã học
a, 2x^2 + 4x + 2 - 2y^2
b, 2x - 2y - x^2 + 2xy - y^2
c, x^2 - y^2 - 2y - 1
d, x^2 - 4x - 2xy - 4y + y^2
bài 2 : phân tích các đa thức sau thành nhân tử bằng các phương pháp đã học
a,x^2 - 3x + 2
b, x^2 + 5x +6
c, x^2 + 6x - 6
d,x^2 -x -2
bài 3, tìm x biết
5x(x-1) = x - 1
1
a, 2x2+4x+2-2y2 = 2(x2+2x+1-y2)= 2[(x+1)2-y2 ] = 2(x-y+1)(x+y+1)
b, 2x - 2y - x2 + 2xy - y2= 2(x -y) - (x2 - 2xy + y2) = 2(x-y)-(x-y)2=(x-y)(2-x+y)
c, x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x-y-1)(x+y+1)
d, x2-4x-2xy-4y+y2= x2-2xy+y2-4x-4y=(x-y)
2.
a, x2-3x+2=x2-x-2x+2=x(x-1)-2(x-1)=(x-2)(x-1)
b, x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+3)(x+2)
c, x2+6x-6=
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
e. \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
f. \(27x^3-\dfrac{1}{8}y^3\)
phân tích đa thức thành nhân tử a. 27x^3-8 b. 8x^3+12x^2+6x+1 c.(2y-1)^2-4x^2+4x-1
a) \(27x^3-8=\left(3x-2\right)\left(9x^2+6x+4\right)\)
b) \(8x^3+12x^2+6x+1=\left(2x+1\right)^3\)
c) \(\left(2y-1\right)^1-4x^2+4x-1=\left(2y-1\right)^2-\left(2x-1\right)^2=\left(2y-1-2x+1\right)\left(2y-1+2x-1\right)\)
\(=\left(2y-2x\right)\left(2y+2x-2\right)=4\left(y-x\right)\left(y+x-1\right)\)
phân tích các đa thức thành nhân tử
1-2y+y2
(x+1)2-25
1-4x2
8-27x3
1-2y+y2=(1-y)2
(x+1)2-25=(x+1-5)(x+1+5)=(x-4)(x+6)
1-4x2=(1-2x)(1+2x)
8-27x3=(2-3x)(4+6x+9x2)
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
e. \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
f. \(27x^3-\dfrac{1}{8}y^3\)
g. \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{32}\)
\(a,=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\\ b,=\dfrac{1}{3}x\left(y+3xz+3z\right)\\ c,=2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
\(d,=x^2\left(\dfrac{2}{5}+5x+y\right)\\ e,=\dfrac{1}{2}\left[\left(x^2+y^2\right)^2-4x^2y^2\right]\\ =\dfrac{1}{2}\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\dfrac{1}{2}\left(x-y\right)^2\left(x+y\right)^2\\ f,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ g,=\dfrac{1}{2}\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)=\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)
Bài 1. Phân tích đa thức 2x – 4y thành nhân tử được kết quả là:
A.2(x – 2y) B. 2( x + y) C. 4(2x – y) D. 2(x + 2y)
Bài 2. Phân tích đa thức 4x2 – 4xy thành nhân tử được kết quả là:
A.4(x2 – xy) B. x(4x – 4y) C. 4x(x – y) D. 4xy(x – y)
Bài 3. Tại x = 99 giá trị biểu thức x2 + x là:
A.990 B. 9900 C. 9100 D. 99000
Bài 4. Các giá trị của x thỏa mãn biểu thức x2 – 12x = 0 là:
A.x = 0 B. x = 12 C. x = 0 và x = 12 D. x = 11
Giúp mik với mik cảm ơn
Phân tích đa thức thành nhân tử :
a. 1-2y+y²
b. (x+1)²-25
c. 1-4x²
d. 8-27x³
e. 27+27x+9x²+x³
f. 8x³-12x²y+6xy²-y³
g.x³+8y³
\(1-2y+y^2=\left(y-1\right)^2\)
\(\left(x+1\right)^2-25=\left(x-1\right)^2-5^2=\left(x-6\right)\left(x+4\right)\)
\(1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
\(8-27x^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
\(27+27x+9x^2+x^3=\left(x+3\right)^3\)
\(8x^3-12x^2y+6xy^2-y^3=\left(2x-y\right)^3\)
\(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Tham khảo nhé~
Mấy cái này chỉ áp dụng HĐT thoyy nha!
\(a,1-2y+y^2=\left(1-y\right)^2\)
\(b,\left(x-1\right)^2-25=\left(x-1-5\right)\left(x-1+5\right)=\left(x-6\right)\left(x+4\right)\)
\(c,1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
\(d,8-27x^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
\(e,27+27x+9x^2+x^3=\left(x+3\right)^3\)
\(f,8x^3-12x^2y+9xy^2-y^3=\left(2x-y\right)^2\)
\(g,x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+y^2\right)=\left(x+2y\right)\left(x-y\right)^2\)
=.= hok tốt!!
\(a,1-2y+y^2=y^2-2y+1.\)
\(=\left(y-1\right)^2\)
\(b,\left(x+1\right)^2-25=\left(x+1\right)^2-5^2\)
\(=\left(x+1+5\right)\left(x+1-5\right)\)
\(d,8-27^3=2^3-27^3=\left(2-27\right)\left(2^2+2.27+27^2\right)\)
\(e,27+27x+9x^2+x^3=3^3+3.3^2x+3.3.x^2+x^3\)
\(=\left(3+x\right)^3\)
\(g,x^3+8y^3=x^3+\left(2x\right)^3=\left(x+2x\right)\left(x^2+2x.x+2x^2\right)\)
\(=\left(x+2x\right)\left(x^2+2x^2+4x\right)\)