Những câu hỏi liên quan
MP
Xem chi tiết
TH
30 tháng 5 2021 lúc 21:27

Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)

Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).

Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).

Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).

Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0

Bình luận (0)
MY
30 tháng 5 2021 lúc 21:19

Tham khảo:

https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29

Bình luận (0)
BH
Xem chi tiết
DH
3 tháng 6 2021 lúc 10:28

\(a^2+2b^2+ab=\frac{7}{16}\left(a-b\right)^2+\frac{9}{16}\left(a+\frac{5}{3}b\right)^2\)

\(\Leftrightarrow\sqrt{a^2+2b^2+ab}=\sqrt{\frac{7}{16}\left(a-b\right)^2+\frac{9}{16}\left(a+\frac{5}{3}b\right)^2}\ge\sqrt{\frac{9}{16}\left(a+\frac{5}{3}b\right)^2}=\frac{3}{4}\left(a+\frac{5}{3}b\right)\)

Tương tự \(\sqrt{b^2+2c^2+bc}\ge\frac{3}{4}\left(b+\frac{5}{3}c\right),\sqrt{c^2+2a^2+ac}\ge\frac{3}{4}\left(c+\frac{5}{3}a\right)\)

Cộng lại vế theo vế ta được: 

\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge\frac{3}{4}\left(a+\frac{5}{3}b+b+\frac{5}{3}c+c+\frac{5}{3}a\right)\)

\(=2\left(a+b+c\right)\).

Dấu \(=\)khi \(a=b=c\ge0\).

Bình luận (0)
 Khách vãng lai đã xóa
DB
3 tháng 6 2021 lúc 11:08

Còn cách khác nè :

Đặt \(P=\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ac}\)

Ta chứng minh \(P\ge2\left(a+b+c\right)\)

\(2P=\sqrt{\left(1+1+2\right)\left(a^2+2b^2+ab\right)}+\sqrt{\left(1+1+2\right)\left(b^2+2c^2+bc\right)}+\sqrt{\left(1+1+2\right)\left(c^2+2a^2+ac\right)}\)

Áp dụng bđt bunyakovsky ta được:

\(2P\ge a+2b+\sqrt{ab}+b+2c+\sqrt{bc}+c+2a+\sqrt{ac}\)

      \(=3\left(a+b+c\right)+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\ge4\left(a+b+c\right)\left(AM-GM\right)\)

Suy ra \(P\ge2\left(a+b+c\right)\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
3 tháng 6 2021 lúc 15:30

mọi người làm cách tối cổ quá , cách tổng quát luôn này 

Ta cần cm \(\sqrt{xa^2+yab+zb^2}\ge ma+nb\)

Nếu \(x=z=>m=n=\frac{\sqrt{x+y+z}}{2}\)

Nếu \(x\ne z=>\hept{\begin{cases}m+n=\sqrt{x+y+z}\\m-n=\frac{x-z}{\sqrt{x+y+z}}\end{cases}}\)

Áp dụng : \(\sqrt{a^2+ab+2b^2}\ge ma+nb\)

Với \(x=1;y=1;z=2\)

Vì \(x\ne z\)\(=>\hept{\begin{cases}m+n=\sqrt{x+y+z}\\m-n=\frac{x-z}{\sqrt{x+y+z}}\end{cases}}\)

\(< =>\hept{\begin{cases}m+n=\sqrt{4}\\m-n=-\frac{1}{\sqrt{4}}\end{cases}}\)

\(< =>\hept{\begin{cases}m+n=\sqrt{4}\\2m=\sqrt{4}-\frac{1}{\sqrt{4}}\end{cases}}\)

\(< =>\hept{\begin{cases}m+n=2\\m=1-\frac{1}{4}=\frac{3}{4}\end{cases}}\)

\(< =>\hept{\begin{cases}m=\frac{3}{4}\\n=\frac{5}{4}\end{cases}}\)

Nên ta cần chứng minh \(\sqrt{a^2+ab+2b^2}\ge\frac{3}{4}a+\frac{5}{4}b\)

đến đây thì bình phương 2 vế rồi chuyển vế là được bđt đúng nhé 

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
TD
6 tháng 10 2016 lúc 9:13

i don not no

câu này đơn giản quá, ko thích hợp vs người đẳng cấp như anh dây đâu

câu này ai giải đc cho tui 10000

Bình luận (0)
LD
Xem chi tiết
H24
2 tháng 5 2021 lúc 20:29

132-79=

Bình luận (0)
 Khách vãng lai đã xóa
PN
2 tháng 5 2021 lúc 20:34

ta có :

\(\frac{a^3+b^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^2}+\frac{b^3-a^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^3}+b-a\)

tương tự rồi cộng theo vế : 

\(LHS\ge2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)

áp dụng bđt cô si

 \(\frac{a^3}{a^2+ab+b^2}+\frac{a^2+ab+b^2}{9}+\frac{1}{3}\ge\frac{3a}{3}=a\)

tương tự rồi cộng theo vế 

\(2\left(\frac{a^3}{a^2+ab+b^2}+...\right)\ge a+b+c-1-\frac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{9}\)

\(\ge\frac{2\left(9-a^2-b^2-c^2-ab-bc-ca\right)}{9}\)

đến đây chịu :)))))

Bình luận (0)
 Khách vãng lai đã xóa
LC
3 tháng 5 2021 lúc 0:44

\(\frac{a^3+b^3}{a^2+ab+b^2}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)

Ta có BĐT phụ: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)( cái này nhân chéo lên tự cm nha )

\(\Rightarrow\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)

CMTT: \(\frac{b^3+c^3}{b^2+bc+c^2}\ge\frac{1}{3}\left(b+c\right);\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{1}{3}\left(c+a\right)\)

\(\Rightarrow VT\ge\frac{2}{3}\left(a+b+c\right)\ge\frac{2}{3}.3\sqrt[3]{abc}=2\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
Xem chi tiết
TL
1 tháng 9 2020 lúc 19:58

Chắc áp dụng BĐT AM-GM á

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 9 2020 lúc 7:43

Bất đẳng thức sau đây đúng với mọi a, b, c không âm:

\(\left(ab+bc+ca\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{49}{18}+k\left(\frac{a}{b+c}-2\right)\)

với \(k=\frac{23}{25}\).

Note. \(k_{\text{max}}\approx\text{0.92102588865167}\) là nghiệm của phương trình bậc 5: 

15116544*k^5+107495424*k^4-373143024*k^3+280903464*k^2+209797812*k-227353091 = 0

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
TD
Xem chi tiết
TN
13 tháng 10 2016 lúc 18:17

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

Bình luận (0)
MA
13 tháng 10 2016 lúc 15:21

P OI cai nay dung bat dang thuc co si do

Bình luận (0)
TD
13 tháng 10 2016 lúc 18:06

k biết làm mà!! )))

Bình luận (0)
BD
Xem chi tiết
NM
28 tháng 12 2015 lúc 21:19

 

\(VT^2\ge\left(1+1+1+1\right)\left(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\right)\ge4.1=4\)

=> VT >/ 2

Dễ CM được \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\ge1\)

Bình luận (0)
TT
28 tháng 12 2015 lúc 21:37

\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\)

\(=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)

\(\ge\frac{a}{\frac{a+b+c+d}{2}}+\frac{b}{\frac{b+c+d+a}{2}}+\frac{c}{\frac{a+b+c+d}{2}}+\frac{d}{\frac{a+b+c+d}{2}}=2\)

Dấu '' = '' xảy ra khi a = b + c+ d 

                              b = c+d+a 

                            c = b+a+d

                             d = a+b+c 

Hình như ko có a ; b; c ;d 

Bình luận (0)
NH
Xem chi tiết