Những câu hỏi liên quan
HT
Xem chi tiết
TT
1 tháng 9 2020 lúc 10:31

Ta có : \(n^2+2n+2=\left(n+1\right)^2+1\ge1\forall n\)

Nên \(\left(n^2+2n+2\right)\left(n^2-2n+2\right)\) là số nguyên tố thì :

\(\orbr{\begin{cases}n^2+2n+2=1\\n^2-2n+2=1\end{cases}}\)

+) Với \(n^2+2n+2=1\) \(\Leftrightarrow\left(n+1\right)^2=0\)

\(\Leftrightarrow n=-1\) ( Loại do n tự nhiên )

+) với \(n^2-2n+2=1\) \(\Leftrightarrow\left(n-1\right)^2=0\)

\(\Leftrightarrow n=1\) ( Thỏa mãn )

Thử lại với \(n=1\) thì \(\left(n^2+2n+2\right)\left(n^2-2n+2\right)=\left(1+2+2\right)\left(1-2+2\right)=5\) là số nguyên tố.

Vậy \(n=1\) thỏa mãn đề.

Bình luận (0)
 Khách vãng lai đã xóa
CC
Xem chi tiết
CA
27 tháng 5 2022 lúc 21:12

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

Bình luận (0)
PL
Xem chi tiết
H24
21 tháng 11 2018 lúc 20:28

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

Bình luận (0)
H24
21 tháng 11 2018 lúc 20:34

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Bình luận (0)
PL
21 tháng 11 2018 lúc 20:41

Thank you nha!

Bình luận (0)
EH
Xem chi tiết
PT
7 tháng 1 2022 lúc 20:38

THAM KHẢO

Bình luận (0)
HH
7 tháng 1 2022 lúc 20:42

THAM KHẢO :

(n là số nguyên tố)

TH1: n-2 =1 và 2n-5 =p

n-2 =1 => n=3 . Thay n=3 vào 2n-5 =2.3-5=1=>A không là số nguyên tố. (LOẠI)

TH2: 2n-5=1 và n-2=p

2n-5=1=>n=3. Thay n=3 vào n-2 =3-2 =1=> A không là số nguyên tố .(không hợp lí)

TH3: 2n-5=-1 và n-2 = - p 

2n-5=-1=>n=2 . Thay n=2  vào n-2=1=> A không là số nguyên tố (không hợp lí)

TH4: n-2=-1 và 2n-5 =-p

n-2=-1=>n=1 thay n=1 vào 2n-5 =-3=> A là số nguyên tố (hợp lí)

 

 

Bình luận (0)
DA
7 tháng 1 2022 lúc 21:29

(n là số nguyên tố)

TH1: n-2 =1 và 2n-5 =p

n-2 =1 => n=3 . Thay n=3 vào 2n-5 =2.3-5=1=>A không là số nguyên tố. (LOẠI)

TH2: 2n-5=1 và n-2=p

2n-5=1=>n=3. Thay n=3 vào n-2 =3-2 =1=> A không là số nguyên tố .(không hợp lí)

TH3: 2n-5=-1 và n-2 = - p 

2n-5=-1=>n=2 . Thay n=2  vào n-2=1=> A không là số nguyên tố (không hợp lí)

TH4: n-2=-1 và 2n-5 =-p

n-2=-1=>n=1 thay n=1 vào 2n-5 =-3=> A là số nguyên tố (hợp 

Bình luận (0)
TR
Xem chi tiết
PL
1 tháng 4 2021 lúc 22:26
Ta có: 2n+6/n+1=2+4/n+1 Để n là số nguyên thì 2+4/n+1 là số nguyên => n+1 là ước nguyên của 4 với n khác -1 => n+1 thuộc tập {1,-1,2,-2,4,-4} *n+1=1 => n=0(TMĐK) *n+1=-1=>n=-2(TMĐk) *n+1=2=>n=1(TMĐK) *n+1=-2=>n=-3(TMĐK) *n+1=4=>n=3(TMĐK) n+1=-4=>n=-5(_TMĐK)
Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
TS
Xem chi tiết
SL
Xem chi tiết
SL
7 tháng 1 2016 lúc 21:28

các bạn có thể giải kỹ ra đk không

 

Bình luận (0)
CA
7 tháng 1 2016 lúc 21:32

olm ơi trừ điểm nguyễn văn ko bít đi ạ bn ấy trả lời chtt

Bình luận (0)
HK
Xem chi tiết
H24
12 tháng 8 2019 lúc 11:03

                                                     Bài giải

Ta có : 

\(E=2^{4^{2n}}+29\)

\(^{\text{ * }}\text{ Với }n=0\text{ thì }2^{4^{2n}}=2^{4^0}=2^1=2\text{ là số nguyên tố}\)

\(^{\text{ * }}\text{ Với }n>0\text{ thì }2^{4^{2n}}\text{ là số chẵn }\text{ }\left(2^{4^{2n}}>0\right)\)

Vậy để E là số nguyên tố thì n = 0

Bình luận (0)
H24
12 tháng 8 2019 lúc 11:04

                                                     Bài giải

Ta có : 

\(E=2^{4^{2n}}+29\)

\(^{\text{ * }}\text{ Với }n=0\text{ thì }2^{4^{2n}}=2^{4^0}=2^1=2\text{ là số nguyên tố}\)

\(^{\text{ * }}\text{ Với }n>0\text{ thì }2^{4^{2n}}\text{ là số chẵn }\text{ }\left(2^{4^{2n}}>0\right)\)

Vậy để E là số nguyên tố thì n = 0

Bình luận (0)
Xem chi tiết
H24
7 tháng 7 2021 lúc 17:33

A = \((2n)^{3} - 3n + 1 \)

\(\Leftrightarrow\) A = \((2n)^{3} - 2n - n + 1\)

\(\Leftrightarrow\) A = \(2n (n^{2} - 1) - ( n-1)\)

\(\Leftrightarrow\) A = \(2n(n - 1)(n+1)-(n-1)\)

\(\Leftrightarrow\) A = \((2n^{2} +2n-1)(n-1)\)

Vì A là số nguyên tố nên n - 1 = 1

\(\Rightarrow\) n = 2

 

Bình luận (0)

giúp e vs .e đang cần gấp

Bình luận (0)