Những câu hỏi liên quan
TH
Xem chi tiết
NG
Xem chi tiết
RT
Xem chi tiết
LL
4 tháng 10 2021 lúc 12:01

a) Ta có: \(\widehat{D_1}+\widehat{D_2}=180^0\)(kề bù)

\(\Rightarrow\widehat{D_1}=180^0-110^0=70^0\)

\(\Rightarrow\widehat{D_1}=\widehat{C_1}=70^0\)

Mà 2 góc này đồng vị

=> a//b

b) Ta có: a//b,a⊥c

=> c⊥b(từ vuông góc đến song song)

Bình luận (0)
H24
4 tháng 10 2021 lúc 12:01

a, Ta có gD1 + gD2 = 180 độ ( hai góc kề bù)

=> gD1 = 180 - gD2 = 180 -110= 70 độ

Vì gD1 = gC1 = 70 độ 

mà hai góc vị trí đồng vj

=> a//b

b, Ta có a//b

mà c ⊥ a

=>c ⊥ b

Bình luận (0)
HT
Xem chi tiết
TN
15 tháng 1 2017 lúc 21:40

Ta có: \(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{\left(a+1\right)b^2}{b^2+1}\)

\(\ge\left(a+1\right)-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\)

Tương tự ta có:\(\frac{b+1}{c^2+1}\ge b+1-\frac{bc+c}{2};\frac{c+1}{a^2+1}\ge c+1-\frac{ca+a}{2}\)

Cộng theo vế ta có: \(VT\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}=6-\frac{3+ab+bc+ca}{2}\)

Mà theo BĐT AM-GM: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

Suy ra \(VT\ge6-3=3\)(ĐPCM)

Bình luận (0)
H24
Xem chi tiết
DT
18 tháng 5 2017 lúc 19:10

c)\(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)

Thế : \(\frac{\left(a-b\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)

\(\Leftrightarrow\frac{a^4+4a^2b^2+b^4}{a^2b^2}\ge\frac{3\left(a^2+b^2\right)}{ab}\)

\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge\frac{3a}{b}+\frac{3b}{a}\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4>=3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)

Bình luận (0)
DT
18 tháng 5 2017 lúc 19:54

Mấy câu khác mình đang suy nghĩ nhé

Bình luận (0)
DT
18 tháng 5 2017 lúc 20:00

a) \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)

\(\Rightarrow\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)\left(\frac{a+b}{2}\right)\)

\(\Rightarrow\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}\)

\(\Rightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(\text{a}+b\right)^2\)

Dấu ''='' chỉ xảy ra khi a=b=1 (đpcm)

Bình luận (0)
NV
Xem chi tiết
HK
28 tháng 7 2019 lúc 8:57

Links:

Câu hỏi của Thu Trang - Toán lớp 7 | Học trực tuyến

Câu hỏi của Trang Mai - Toán lớp 7 | Học trực tuyến

Chúc pạn hok tốt!

Bình luận (2)
H24
Xem chi tiết
DT
2 tháng 4 2017 lúc 18:12

Bài này khó dữ chị ơi! Em chỉ mới học lớp 4! Sorry chị nha!

Bình luận (0)
VN
2 tháng 4 2017 lúc 18:26

em bó tay.com. vn

em mới lớp 5 thui chị ơi

Bình luận (0)
H24
Xem chi tiết
LL
25 tháng 1 2017 lúc 22:54

mình chịu

Bình luận (0)
TD
Xem chi tiết
NT
8 tháng 8 2023 lúc 14:14

 \(10^{10}\) không chia hết cho 9; \(10^9\) không chia hết cho 3, bạn xem lại đề

Bình luận (0)
TL
8 tháng 8 2023 lúc 14:16

Bạn xem lại đề nha nhìn là biết sai rồi

Bình luận (0)
NT
8 tháng 8 2023 lúc 14:17

Câu C cũng xem lại đề

 

Bình luận (0)