Nếu a+b+c=0 thì
a^4+b^4+c^4=2(a^2b^2+b^2c^2+c^2a^2)
1. CMR: Nếu a,b,c là độ dài 3 cạnh tam giác thì:
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
2. PTĐT thành nhân tử
a) \(a^6+a^4+a^2b^2+b^4+b^6\)
b) \(a^3+3ab+b^3-1\)
c) \(a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)-c^2a^2\left(c-a\right)\)
d) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
2.
\(a,Sửa:a^6+a^4+a^2b^2+b^4-b^6\\ =\left(a^6-b^6\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2+b^2\right)^2-a^2b^2\right]\left(a^2-b^2+1\right)\\ =\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left(a^2-b^2+1\right)\\ b,=\left(a^3+b^3\right)-1+3ab\\ =\left(a+b\right)^3-3ab\left(a+b\right)-1+3ab\\ =\left(a+b-1\right)\left(a^2+2ab+b^2+a+b+1\right)-3ab\left(a+b-1\right)\\ =\left(a+b-1\right)\left(a^2+b^2+1+a+b-ab\right)\)
\(c,=a^2b^2\left(b-a\right)+b^2c^2\left(c-a+a-b\right)-c^2a^2\left(c-a\right)\\ =-a^2b^2\left(a-b\right)+b^2c^2\left(a-b\right)+b^2c^2\left(c-a\right)-c^2a^2\left(c-a\right)\\ =\left(a-b\right)\left(b^2c^2-a^2b^2\right)+\left(c-a\right)\left(b^2c^2-c^2a^2\right)\\ =b^2\left(a-b\right)\left(c-a\right)\left(c+a\right)+c^2\left(c-a\right)\left(b-a\right)\left(b+a\right)\\ =\left(a-b\right)\left(c-a\right)\left[b^2\left(c+a\right)-c^2\left(b+a\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b^2c+ab^2-bc^2-ac^2\right)\\ =\left(a-b\right)\left(c-a\right)\left[bc\left(b-c\right)+a\left(b-c\right)\left(b+c\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(bc+ab+ac\right)\)
CMR nếu a, b,c là độ dài 3 cạnh của một tam giác thì:
a) 4a^2 -(a^2+ b^2 +c^2) >0
b)2a^2b^2 + 2b^2c^2 +2a^2c^2 - a^4 -b^4 - c^4>0
phân tích ĐTTNT :A=2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4. nếu a,b,c là độ dài 3 cạnh tam giác thì CM A >0
bạn ơi a2 là a^2 bạn nhé,mấy cái khác cũng tương tự,vì mình lười bấm nhé)
A=2a2b2+2b2c2+2a2c2−a4−b4−c4
⟺A=4a2c2−(a4+b4+c4−2a2b2+2a2c2−2b2c2)
⟺A=4a2c2−(a2−b2+c2)2
⟺A=(2ac+a2−b2+c2)(2ac−a2+b2−c2)
⟺A=((a+c)2−b2)(b2−(a−c)2)
⟺A=(a+b+c)(a+c−b)(b+a−c)(b−a+c)
Mà a, b, ca, b, c là 33 cạnh của tam giác nên:a+b+c>0;a+c−b>0;b+a−c>0;b−a+c>0⟹(a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
⟹A>0 (Dpcm)
CMR nếu a=b+c thì a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2
a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c²
=> c^4 = (a² + b² + 2ab)²
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3
vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b²
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b²
= 2a²(a + b)² + 2b²(a + b)² + 2a²b²
= 2a²b² + 2(a + b)²(a² + b²)
= 2a²b² + 2c²(a² +b²)
= 2a²b² + 2b²c² + 2c²a² (đpcm)
CMR nếu a=b+c thì a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2
gt: a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c²
=> c^4 = (a² + b² + 2ab)²
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3
vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b²
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b²
= 2a²(a + b)² + 2b²(a + b)² + 2a²b²
= 2a²b² + 2(a + b)²(a² + b²)
= 2a²b² + 2c²(a² +b²)
= 2a²b² + 2b²c² + 2c²a² (đpcm)
CMR: NẾU a,b,c là độ dài các cạnh của tam giác thì:
B=\(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2< 0\)
cho biểu thức A =\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\).CMR nếu a,b,c là 3 cạnh của một tam giác thì A>0
444448888855555695+777+6666555888852652522222222222222222256585965
Đặt A=2a2b2+2c2a2+2b2c2 - a4 - b4 - c4
A= - ( a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2)
A= - (a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2 - 4(ca)2)
áp dụng hàng đẳng thức:
(a2-b2+c2)=a4+b4+c4-2(ab)2-2(bc)2+2(ca)2
A= - ( (a2-b2+c2)-4(ca)2)
A= - (a2-b2+c2-2ca) (a2-b2+c2+2ca)
CHÚC BẠN HỌC TỐT##
Chứng minh rằng : nếu a , b , c là độ dài 3 cạnh tam giác thì
\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4>0\)
Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2 + 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 = (a2 + b2 - c2)2 - 4a2b2
= (a2 + b2 - c2 - 2ab).(a2 + b2 - c2 + 2ab) (1)
Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c2 > (|a - b|)2 = (a - b)2
=> c2 > a2 + b2 - 2ab => a2 + b2 - c2 - 2ab < 0 (2)
lại có : a+ b > c => (a+ b) 2 > c2 => a2 + b2 - c2 + 2ab > 0 (3)
Từ (1)(2)(3) => A < 0 => đpcm
Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2 - 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 = (a2 + b2 - c2)2 - 4a2b2
= (a2 + b2 - c2 - 2ab).(a2 + b2 - c2 + 2ab) (1)
Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c2 > (|a - b|)2 = (a - b)2
=> c2 > a2 + b2 - 2ab => a2 + b2 - c2 - 2ab < 0 (2)
lại có : a+ b > c => (a+ b) 2 > c2 => a2 + b2 - c2 + 2ab > 0 (3)
Từ (1)(2)(3) => A < 0 => đpcm
CMR với a,b,c dương thì \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0.\)
CM RẰNG : Nếu A,B,C là độ dài 3 cạnh tam giác thì B =\(A^4+B^4+C^4-2A^2B^2-2B^2C^2-2C^2A^2\)