cho x>0,y>0 tm x+y>=3 cmr x+y+1/2x+2/y>=9/2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 + 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+ 4b + 1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 + 1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 + 2009/ab+bc+ac >=670
Cho x,y >0 và x+y>=3 . Cmr:
x+y+1/2x+ 2/y>=9/2
Cho mình hỏi thật sự \(\ge\)9/2 hay là \(\ge\) 8/3 vậy vì mình chỉ tính ra \(\ge\) 8/3 thôi.
1.Cho x^2+ 4x+1 = 0
Tính A= ( x + 1/x )^2 + (x^2 + 1/x^2 )^2 + ( x^3+ 1/x^3 )^2
2.Cho các số thực x, y khác 0 sao cho x+ 1/y và y+ 1/x là những số nguyên . CMR x^3y^3 + 1/x^3y^3 là số nguyên.
3.Cho x,y,z khác 0 tm x(y+z)^2+y(z+x)^2+z(x+y)^2=4xyz
Cho xy>0 tm:\(x^2>2;y^2>2\)
CMR:\(x^4-x^3y+x^2y^2-xy^3+y^4\text{ }\text{ }\)≥ \(x^2+y^2\)
Đề là CMR $x^4-x^3y+x^2y^2-xy^3+y^4> x^2+y^2$ thì đúng hơn bạn ạ.
Lời giải:
Ta có:
$\text{VT}=(x^4+y^4-x^3y-xy^3)+x^2y^2$
$=(x-y)^2(x^2+xy+y^2)+x^2y^2\geq x^2y^2$
Mà:
$x^2y^2=\frac{x^2y^2}{2}+\frac{x^2y^2}{2}> \frac{x^2.2}{2}+\frac{2.y^2}{2}=x^2+y^2$ do $x^2> 2, y^2>2$
Do đó: $\text{VT}> x^2+y^2$ (đpcm)
1,\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+4}\right)=2\). CMR: 2x +y =0
2,\(\left(x+\sqrt{x^2+9}\right)\left(y+\sqrt{y^2}+4\right)=6\). CMR 2x+3y=0
Cho x>0,y>0 và x2-y2+2x-4y=3 . CMR : x-y=1