tinh a=2.2014/1+1/1+2+1/1+2+3+........+1/1+2+...+2014
CMR phân số sau chưa tối giản: \(\frac{2014^3+2.2014^2-1}{2014^3+2.2014^2+4208+1}\)
Tính :
D= \(\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}...+\frac{1}{1+2+3+4+...+2014}}\)
\(D=\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2014}}\)
\(D=\frac{2.2014}{\frac{2}{2}+\frac{1}{\frac{2.3}{2}}+...+\frac{1}{\frac{2015.2014}{2}}}\)
\(D=\frac{2.2014}{\frac{2}{2}+\frac{2}{2.3}+...+\frac{2}{2014.2015}}\)
\(D=\frac{2015}{\frac{1}{2}+\frac{1}{2.3}+...+\frac{1}{2014.2015}}\)
\(D=\frac{2014}{\frac{1}{2}+\frac{1}{2}-\frac{1}{2015}}\)
\(D=\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}}\)
\(D=\frac{2.2014}{\frac{1}{\frac{\left(1+1\right).1}{2}}+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2014+1\right).2014}{2}}}\)
\(D=\frac{2.2014}{\frac{2}{1.2}+\frac{2}{3.2}+\frac{2}{4.3}+\frac{2}{2015.2014}}\)
\(D=\frac{2.2014}{2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)}\)
\(D=\frac{2014}{\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)}\)
\(D=\frac{2014}{\left(1-\frac{1}{2015}\right)}\)
\(D=\frac{2014}{\frac{2014}{2015}}\)
\(D=\frac{2014.2015}{2014}\)
\(D=2015\)
Tham khảo nhé~
So sánh A và B:
\(A=\sqrt{2015^2-1}-\sqrt{2014^2-1}\)
\(B=\frac{2.2014}{\sqrt{2015^2-1}+\sqrt{2014^2-1}}\)
Tính:
\(A=\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2014}}\)
\(B=\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\)
so sánh \(\sqrt{2015^2-1}-\sqrt{2014^2-1}\) và \(\frac{2.2014}{\sqrt{2015^2-1}+\sqrt{2014^2-1}}\)
Nhân cả 2 với (\(\sqrt{2015^2-1}\)+\(\sqrt{2014^2-1}\))
A = 2015^2 -1 -2014^2 + 1 = (2014 + 1)^2 -2014^2 = 2.2014 + 1
B = 2.2014
=> A = B + 1
a/Tính: A= \(\sqrt{1+2006^2+\frac{2006^2}{2007^2}}+\frac{2006}{2007}\)
b/Cho A=\(\sqrt{2015^2-1}-\sqrt{2014^2-1}\)và B=\(\frac{2.2014}{\sqrt{2015^2-1}+\sqrt{2014^2-1}}\)
So sánh A vs B
cho \(A=\sqrt{2013^2+2013^2.2014^2+2014^2}\)
chứng minh A là 1 số tự nhiên
Ta có :
\(A=\sqrt{2013^2+2013^2.2014^2+2014^2}\)
\(=\sqrt{\left(2013.2014\right)^2+2013.\left(2014-1\right)+\left(2013+1\right).2014}\)
\(=\sqrt{\left(2013.2014\right)^2+2013.2014-2013+2014+2014.2013}\)
\(=\sqrt{\left(2013.2014\right)^2+2.2013.2014.1+1^2}\)
\(=\sqrt{\left(2013.2014+1\right)^2}\)
\(=2013.2014+1\in N\)
Vậy ...
Ta có: \(A=\sqrt{2013^2+2013^2.2014^2+2014^2}\)
<=>\(A=\sqrt{\left(2014^2+2013^2-2.2013.3014\right)+2.2013.2014+\left(2013.2014\right)^2}\)
<=>\(A=\sqrt{\left(2014-2013\right)^2+2.2013.2014+\left(2013.2014\right)^2}\)
<=>\(A=\sqrt{1+2.2013.2014+\left(2013.2014\right)^2}\)
<=>\(A=\sqrt{\left(2013.2014+1\right)^2}\)
<=>A=2013.2014+1
<=>A=4054183
Vậy A là số tự nhiên
tinh A/B
A=1/2+1/3+...+1/2016
B=1/2015+2/2014+...+2014/2+2015/1
a=(1/2^2-1)(1/3^2-1)........(1/2014^2-1)
tinh a