Những câu hỏi liên quan
DC
Xem chi tiết
TA
Xem chi tiết
ND
7 tháng 10 2015 lúc 12:37

A = 2.22 + 3.23 + 4.24 + ... + n.2n 

2.A = 2.2+ 3.2+ 4.2+ ...+ n.2n+1

=> A - 2.A = 2.22 + (3.2- 2.23)  + (4.2- 3.24) + ...+ (n - n + 1).2- n.2n+1

=> A = 2.2+ 2+ 2+ ..+ 2- n.2n+ 1  = 22 + (2+ 2+ ....+ 2n+ 1) - (n+1).2n+1

=> A =  - 22 -  (2+ 2+ ....+ 2n+ 1) + (n+1).2n+1

Tính B = 2+ 2+ ....+ 2n+ 1 => 2.B =  2+ ....+ 2n+ 1 + 2n+2 => 2B - B = 2n+2 - 22 => B = 2n+2 - 22

Vậy A = 22 - 2n+2 + 22 + (n+1).2n+1 = (n+1).2n+1 - 2n+ 2 = 2n+1.(n + 1 - 2) = (n-1).2n+1 = 2(n-1).2n

Theo bài cho  A = 2(n-1).2n = 2n+10 => 2(n - 1) = 210 => n - 1 = 2 = 512 => n = 513

Vậy.............

Bình luận (0)
HN
10 tháng 10 2016 lúc 19:32

n= 513, tui chỉ biết đáp án nhưng không biết cách làm

Bình luận (0)
LC
5 tháng 4 2017 lúc 20:12

đặt A=2+2^2+2^3+...+2^n

     2A=2^2+2^3+2^4+...+2^n+1 (1)

  2A-A=2\(^{n+1}\)-2

     A=2\(^{n+1}\)-2  (2)

từ (1)(2) =>2 + 2\(^2\)+2\(^3\)+...+2\(^n\)=2\(^{n+1}\)-2

                      2\(^2\)+2\(^3\)+...+2\(^n\)=2\(^{n-1}\)-2\(^2\)

                              ..............................

                                             2\(^n\)=2\(^{n-1}\)-2\(^n\)

cộng vế với vế ta có 

 2+2.2\(^2\)+3.2\(^3\)+...+n.2\(^n\)= n.2\(^{n+1}\)- (2+2\(^2\)+2\(^3\)+...+2\(^n\))

2+(2.2\(^2\)+3.2\(^3\)+...+n.2\(^n\)=n.2\(^{n+1}\)- A

     2+2\(^{n+10}\)=n.2\(^{n+1}\)-2\(^{n+1}\)+2

            2\(^{n+10}\)=2\(^{n+1}\).(n-1)

             2\(^{n+1}\). 2\(^9\)=2\(^{n+1}\).(n-1)

=>n-1=2\(^9\)

=>n=2^9+1=513

vậy n=513

Bình luận (0)
ZH
Xem chi tiết
H24
Xem chi tiết
TO
Xem chi tiết
BC
Xem chi tiết
KN
1 tháng 8 2019 lúc 9:07

Đặt \(A=2.2^2+3.2^3+4.2^4+5.2^5+...+n.2^n\)

\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)

\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)

\(-2.2^2-3.2^3-4.2^4-5.2^5-...-n.2^n\)

\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)

Đặt \(M=\left(2^3+2^4+...+2^n\right)\)

\(\Rightarrow2M=\left(2^4+2^5+...+2^{n+1}\right)\)

\(\Rightarrow M=2^{n+1}-2^3\)

\(\Rightarrow A=n.2^{n+1}-2^3-2^{n+1}+2^3\)

\(\Rightarrow A=\left(n-1\right)2^{n+1}=2^{n+10}\)

\(\Rightarrow\left(n-1\right)=2^9\)

\(\Rightarrow n=513\)

Bình luận (0)
BC
Xem chi tiết
H24
1 tháng 8 2019 lúc 10:42

Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n=2^{n+10}\)

\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)

\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}-2.2^2-3.2^3-4.2^4-...-n.2^n\)

\(\Leftrightarrow A=-2.2^2+\left(2.2^3-3.2^3\right)+\left(3.2^4-4.2^4\right)+...+[\left(n-1\right)2^n-n.2^n]+n.2^{n+1}\)

\(\Leftrightarrow A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)

\(\Leftrightarrow A=-2^3-\left(2^4-2^3\right)-\left(2^5-2^4\right)-...-\left(2^{n+1}-2^n\right)+n.2^{n+1}\)

\(\Leftrightarrow A=-2^3-2^4+2^3-2^5+2^4-...-2^{n+1}+2^n+n.2^{n+1}\)

\(\Leftrightarrow A=-2^{n+1}+n.2^{n+1}\)

\(\Leftrightarrow A=2^{n+1}\left(n-1\right)\)

Mà \(A=2^{n+10}=2^{n+1}.2^9=2^{n+1}.512\)

\(\Rightarrow n-1=512\)

\(\Rightarrow n=513\)

Bình luận (0)
ZH
Xem chi tiết
LL
Xem chi tiết
H24
20 tháng 8 2023 lúc 10:08

Để tìm số tự nhiên n thoả mãn phương trình 2.2^2 + 3.2^3 + 3.2^4 + ... + n.2^n = 2^n + 11, chúng ta có thể thử từng giá trị của n cho đến khi phương trình được thỏa mãn.

Bắt đầu với n = 1: 2.2^2 = 2^2 + 11 8 = 4 + 11 8 = 15 Phương trình không thỏa mãn.

Tiếp tục với n = 2: 2.2^2 + 3.2^3 = 2^2 + 11 8 + 24 = 4 + 11 32 = 15 Phương trình không thỏa mãn.

Tiếp tục với n = 3: 2.2^2 + 3.2^3 + 3.2^4 = 2^3 + 11 8 + 24 + 48 = 8 + 11 80 = 19 Phương trình không thỏa mãn.

Tiếp tục với n = 4: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 = 2^4 + 11 8 + 24 + 48 + 64 = 16 + 11 144 = 27 Phương trình không thỏa mãn.

Tiếp tục với n = 5: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 = 2^5 + 11 8 + 24 + 48 + 64 + 160 = 32 + 11 304 = 43 Phương trình không thỏa mãn.

Tiếp tục với n = 6: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 = 2^6 + 11 8 + 24 + 48 + 64 + 160 + 384 = 64 + 11 688 = 75 Phương trình không thỏa mãn.

Tiếp tục với n = 7: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 = 2^7 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 = 128 + 11 2576 = 139 Phương trình không thỏa mãn.

Tiếp tục với n = 8: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 = 2^8 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 = 256 + 11 4576 = 267 Phương trình không thỏa mãn.

Tiếp tục với n = 9: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 + 9.2^9 = 2^9 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 + 4608 = 512 + 11 9600 = 523 Phương trình không thỏa mãn.

Tiếp tục với n = 10: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 + 9.2^9 + 10.2^10 = 2^10 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 + 4608 + 10240 = 1024 + 11 23840 = 1035 Phương trình không thỏa mãn.

Như vậy, sau khi thử tất cả các giá trị của n từ 1 đến 10, ta thấy không có số tự nhiên n nào thỏa mãn phương trình đã cho.

 
Bình luận (0)