Những câu hỏi liên quan
TD
Xem chi tiết
NN
Xem chi tiết
H24
13 tháng 3 2018 lúc 18:03

Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)

Bình luận (0)
TM
14 tháng 3 2018 lúc 18:00

Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018 

Dấu "=" xảy ra khi: t=0⇔x=2017

 ...

..

Bình luận (0)
H24
29 tháng 12 2018 lúc 8:11

\(A=\frac{\left|x-2017\right|+2017}{\left|x-2017\right|+2018}=1-\frac{1}{\left|x-2017\right|+2018}\)

A bé nhất khi \(\frac{1}{\left|x-2017\right|+2018}\) lớn nhất.

Mà \(\frac{1}{\left|x-2018\right|+2018}\le\frac{1}{2018}\forall x\) (do \(\left|x-2018\right|\ge0\forall x\))

Suy ra \(A\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)

Vậy \(A_{min}=\frac{2017}{2018}\Leftrightarrow x=2017\)

Bình luận (0)
SY
Xem chi tiết
NH
30 tháng 3 2018 lúc 19:40

Với mọi x ta có :

\(\left|x+2018\right|=\left|-x-2018\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|x+2018\right|=\left|x+2016\right|+\left|-x-2018\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge\left|\left(x+2016\right)+\left(-x-2018\right)\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge\left|-2\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge2\)

\(\left|x+2017\right|\ge0\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|+\left|x+2017\right|\ge2\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}\left(x+2016\right)\left(-x-2018\right)\ge0\left(1\right)\\\left|x+2017\right|=0\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2016\ge0\\-x-2018\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2016\le0\\-x-2018\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-2016\\-2018\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-2016\\-2018\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-2016\ge x\ge-2018\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow-2016\ge x\ge-2018\left(I\right)\)

Từ \(\left(2\right)\Leftrightarrow x+2017=0\)

\(\Leftrightarrow x=-2017\left(II\right)\)

Từ \(\left(I\right)+\left(II\right)\Leftrightarrow GTNN\) của \(\left|x+2016\right|+\left|x+2017\right|+\left|x+2017\right|=2\Leftrightarrow x=-2017\)

Bình luận (0)
KO
Xem chi tiết
H24
12 tháng 12 2017 lúc 14:31

vì |x+2017|\(\ge\)0

=> |x+2017|+2018\(\ge\)2018

|x+2017|+2019\(\ge\)2019

=> GTNN của \(\dfrac{\left|x+2017\right|+2018}{\left|x+2017\right|+2019}\)=\(\dfrac{2018}{2019}\)

Bình luận (3)
UK
12 tháng 12 2017 lúc 15:36

Đặt \(t=\left|x+2017\right|\ge0\)

Đặt biểu thức là T, ta có:

\(T=\dfrac{t+2018}{t+2019}=\dfrac{t+2019-1}{t+2019}=1-\dfrac{1}{t+2019}\)

Ta có: \(t\ge0\Rightarrow t+2019\ge2019\)

\(\Rightarrow\dfrac{1}{t+2019}\le\dfrac{1}{2019}\)

\(\Rightarrow-\dfrac{1}{t+2019}\ge-\dfrac{1}{2019}\)

\(\Rightarrow T\ge1-\dfrac{1}{2019}=\dfrac{2008}{2009}\)

GTNN của T là \(\dfrac{2008}{2009}\) khi \(t=0\Leftrightarrow\left|x+2017\right|=0\Leftrightarrow x=-2017\)

Bình luận (23)
VH
Xem chi tiết
VT
27 tháng 2 2020 lúc 15:15

Sao chép

Bình luận (0)
 Khách vãng lai đã xóa
AH
Xem chi tiết
ND
7 tháng 5 2018 lúc 19:54

Đặt x - 2017 = a

Phương trình trên tương đương:

\(\dfrac{\left(-a\right)^2-\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}{\left(-a\right)^2+\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{a^2+a^2-a+a^2-2a+1}{a^2-a^2+a+a^2-2a+1}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{3a^2-3a+1}{a^2-a+1}=\dfrac{5}{3}\)

\(\Leftrightarrow9x^2-9x+3=5x^2-5x+5\)

\(\Leftrightarrow4x^2-4x-2=0\)

\(\Leftrightarrow\left(x-\dfrac{1+\sqrt{3}}{2}\right)\left(x-\dfrac{1-\sqrt{3}}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1+\sqrt{3}}{2}\\\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình: \(S=\left\{\dfrac{1+\sqrt{3}}{2};\dfrac{1-\sqrt{3}}{2}\right\}\)

Bình luận (0)
ER
Xem chi tiết
PL
6 tháng 3 2020 lúc 20:57

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

Bình luận (0)
 Khách vãng lai đã xóa
H24
6 tháng 3 2020 lúc 20:57

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
6 tháng 3 2020 lúc 20:58

Ta có : \(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(=1-\frac{1}{\left|x-2017\right|+2019}\)

Ta có : \(\left|x-2017\right|\ge0\)

\(\Rightarrow\left|x-2017\right|+2019\ge2019\)

\(\Rightarrow\frac{1}{\left|x-2017\right|+2019}\le\frac{1}{2019}\)

\(\Rightarrow-\frac{1}{\left|x-2017\right|+2019}\ge-\frac{1}{2019}\)

\(\Rightarrow1-\frac{1}{\left|x-2017\right|+2019}\ge1-\frac{1}{2019}=\frac{2018}{2019}\)

Hay : \(A\ge\frac{2018}{2019}\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)

Vậy : min \(A=\frac{2018}{2019}\) tại \(x=2017\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
TH
Xem chi tiết
NA
7 tháng 11 2019 lúc 20:47

Ta có:

|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|

=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|

=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)

∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:

|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|

≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2

∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x

⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2

Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016

Vậy GTNNGTNN của biểu thức là 2⇔x=2016

Bình luận (0)
 Khách vãng lai đã xóa