A=2mu2+4mu2+6mu2+...+(2K)mu2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A=1/2mu2+1/3mu2+1/4mu2+...+1/100mu2
B=1/4mu2+1/6mu2+1/8mu2+...+1/200mu2
Tính A/B
Biết rằng 1mu 2 +2mu2 +3mu2+......+10mu2= 385 tính nhanh di tổng. S=2mu2+4mu2+6mu2+.....+20mu2
S = 22 + 42 + 62 + ... + 202
= (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2
= 22.12 + 22.22 + 22.32 + ... + 22.102
= 22 (12 + 22 + ... + 102 )
= 4 . 385
= 1540
= (1x2)^2 (2x2)^2 (3x2)^2 (4x2)^2 ..... (9x2)^2 (10x2)^2
= 1^2 x 2^2 2^2 x 2^2 3^2 x 2^2 4^2 x 2^2 ..... 9^2 x 2^2 10^2 x 2^2
= (1^2 2^2 3^2 4^2 ..... 9^2 10^2) x 2^2
= 385 x 2^2 = 385 x 4 = 1540
4mu2:4.3mu3-2mu2+7
42:4.33-22+7
⇒ 4.27-4+7
⇒ 108-4+7
⇒ 111
4\(^2\) : 4.3\(^3\) - 2\(^2\) + 7
= 16 : 4 . 27 - 4 + 7
= 4 . 27 - 4 + 7
= 108 - 4 + 7
= 104 + 7
= 111
-Tick cho mình nha mình cảm ơn ạ. <3
choA=1/5 mu2+1/6mu2+1/7mu2+...+1/2004mu2 chung minh rang1/65<A<1/4
A = \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + \(\dfrac{1}{7^2}\) +.................+ \(\dfrac{1}{2004^2}\)
A = \(\dfrac{1}{5.5}\) + \(\dfrac{1}{6.6}\) + \(\dfrac{1}{7.7}\)+..............+ \(\dfrac{1}{2004.2004}\)
Vì \(\dfrac{1}{5}>\dfrac{1}{6}>\dfrac{1}{7}>...........>\dfrac{1}{2004}\)
nên ta có : \(\dfrac{1}{5.5}>\dfrac{1}{5.6}>\dfrac{1}{6.6}>\dfrac{1}{6.7}>\dfrac{1}{7.7}>.....>\dfrac{1}{2004.2004}>\dfrac{1}{2004.2005}\)
\(\dfrac{1}{5.5}+\dfrac{1}{6.6}+\dfrac{1}{7.7}+...+\dfrac{1}{2004.2004}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+..+\dfrac{1}{2004.2005}\)
A > \(\dfrac{1}{5}\) \(-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+....+\dfrac{1}{2004}-\dfrac{1}{2005}\)
A > \(\dfrac{1}{5}\) - \(\dfrac{1}{2005}\) = \(\dfrac{1}{5}\) - \(\dfrac{12}{24060}\)
\(\dfrac{1}{65}\) = \(\dfrac{1}{5}\) - \(\dfrac{12}{65}\)
Vì \(\dfrac{12}{65}\) > \(\dfrac{12}{24060}\) nên A> \(\dfrac{1}{65}\) ( phân số nào có phần bù nhỏ hơn thì phân số đó lớn hơn)
Tương tự ta có :
A = \(\dfrac{1}{5.5}\) + \(\dfrac{1}{6.6}\)+ \(\dfrac{1}{7.7}\)+......+\(\dfrac{1}{2004.2004}\) >\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+.....\(\dfrac{1}{2003.2004}\)
A < \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) +......+ \(\dfrac{1}{2003}\) - \(\dfrac{1}{2004}\)
A < \(\dfrac{1}{4}-\dfrac{1}{2004}\) < \(\dfrac{1}{4}\)
\(\dfrac{1}{65}< \)A < \(\dfrac{1}{4}\) (đpcm)
S=1/2mu2 + 1/3mu2 + 1/4mu2 + ... + 1/100mu2 bé hơn 1
Ta thấy :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
......
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow S< 1-\frac{1}{100}\)
Mà \(1-\frac{1}{100}< 1\)nên \(S< 1\)
Ủng hộ mk nha !!! *_*
chung minh rang : 1 +1/2mu2 +1/3mu2 +1/4mu2 +...+1/100mu2 < 2
\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\left(đpcm\right)\)
chung minh rang;
1/2mu2+1/3mu2+1/4mu2+...+1/2005mu2<1/2
1/2^2+1/3^2+1/4^2+....+1/2005^2
ta có vì:1/2^2<1/2; 1/3^2 <1/2.....;1/2005^2<1/2
suy ra 1/2^2+1/3^2+1/4^2+....+1/2005^2<1/2
11/2mu2+1/3mu2+1/4mu2+...+1/9mu2 cmr 2/5<s<8/9
86:[2.(2.x-1)mu2-7]+4mu2= 2.3mu2
Giúp mk nhoa
86:[2.(2.x-1)2-7]+42 = 2.32
86:[2.(2.x-1)2-7]+16 = 2.9
86:[2.(2.x-1)2-7]+16 = 18
86:[2.(2.x-1)2-7] = 18-16
86:[2.(2.x-1)2-7] = 2
2.(2.x-1)2-7 = 86:2
2.(2.x-1)2-7 = 43
2.(2.x-1)2 = 43+7
2.(2.x-1)2 = 50
(2.x-1)2 = 50:2
(2.x-1)2 = 25
(2.x-1)2 =52
\(\Rightarrow\)2.x-1 = 5
2.x = 5+1
2.x = 6
x = 6:2
x = 3