Cho ba tỉ số bằng nhau là a/b+c ; b/c+a ; c/a+b.
Tính giá trị của mỗi tỉ số đó
Cho ba tỉ số bằng nhau là a/b+c, b/c+a, c/a+b. Tìm giá trị của mỗi tỉ số đó
Nêu a+b+c khác 0 thi theo tinh chat day ti sô bang nhau ta co. a/b+c=b/c+a=c/a+b=a+b+c/2(a+b+c)=1/2N êu a+b+c=0 thi b+c=-a; c+a=-b;a+b=-c. Nêna/b+c,b/c+a,c/a+b =-1
Vì =\(\frac{b}{a+c}\)=\(\frac{a}{b+c}\)\(\frac{c}{a+b}\)
Nên a=b=c
suy ra \(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)
Vậy\(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)= \(\frac{1}{2}\)
Cho ba tỉ số bằng nhau là a/b+c, b/c+a, c/a+b. Tìm giá trị của mỗi tỉ số đó
Cho ba tỉ số bằng nhau là : \(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\) . Tìm giá trị của mỗi tỉ số đó
ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b++c\right)}=\frac{1}{2}\)
Vậy giá trị mỗi tỉ số là \(\frac{1}{2}\)
ta có \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
vì =>\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
Cho ba tỉ số bằng nhau là \(\frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b}\). tìm giá trị của mỗi tỉ số đó
nếu a+b+c khác 0 thì a/b+c=b/a+c=c/a+b=1/2
nếu a+b+c=0 thì b+c=-a
c+a=-b
a=b=-c nên a/b=
Nếu \(a+b+c+0\Rightarrow\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}}\).
Suy ra: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=-\frac{1}{2}\).
Nếu \(a+b+c\ne0\) , áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\).
Nếu \(a,b,c\ne0\)thì theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu \(a+b+c=0\)thì \(b+c=-a;c+a=-b;a+b=-c\)
\(\Leftrightarrow\)Tỉ số của \(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}=-1\)
Cho biết ba số a,b,c tỉ lệ với các số 2;4;6. Hãy ghi dãy tỉ số bằng nhau tương ứng.
Theo đề bài các số a, b, c tỉ lệ với các số 2, 4, 6
\( \Rightarrow \) a : b : c = 2 : 4 : 6
\( \Rightarrow \) \(\dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{6}\) ( Áp dụng lí thuyết về dãy tỉ số bằng nhau )
Cho ba tỉ số bằng nhau là:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Chứng minh rằng a=b=c
Cho ba tỉ số bằng nhau :\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)tìm giá trị của mỗi tỉ số đó ?
Nếu : \(a+b+c\ne0\) thì theo tính chất dãy tỉ số bằng nhau :
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu : a+b+c = 0 thì b+c = - a ; c+a = - b ; a+b= - c nên mỗi tỉ số : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=-1\)
Cho ba tỉ số bằng nhau là \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Tìm giá trị của mỗi tỉ số đó
Ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}.\)
+ Nếu \(a+b+c\ne0.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}.\)
+ Nếu \(a+b+c=0.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-c\end{matrix}\right.\)
\(\Rightarrow\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=-1.\)
Chúc bạn học tốt!
Cho ba số hữu tỉ \(\frac{6}{5}\), \(\frac{7}{-4}\),\(\frac{2}{-3}\)
a. Viết ba số hữu tỉ bằng mối số hữu tỉ trên và có mẫu là số dương
b. Viết ba số hữu tỉ bằng mối số hữu tỉ trên và có mẫu là số dương bằng nhau
a. 3 số hữu tỉ có mẫu dương: \(\frac{6}{5},\frac{-7}{4},\frac{-2}{3}\)
b. 3 số hữu tỉ có mẫu là các số dương bằng nhau: \(\frac{72}{60},\frac{105}{60},\frac{40}{60}\)
ba số hữư tỉ trên có mẫu dương là
6/5;-7/4;-2/3
ba số hữư tỉ trên có mẫu dương bằng nhau là
72/60;105/60;40/60