Những câu hỏi liên quan
HT
Xem chi tiết
QA
Xem chi tiết
QA
1 tháng 5 2021 lúc 18:20

Giúp mình câu này đi, mình cần gấp lắm, ai đúng mình k cho.

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
BG
Xem chi tiết
NP
12 tháng 6 2021 lúc 12:38

                                    Giải

Đặt A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A>20/40+40/80

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A<20/20+40/40

→A<2 (2)

Từ (1),(2)→1<A<2

→A không là số tự nhiên

Bình luận (0)
NP
11 tháng 7 2021 lúc 17:35

Đặt A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A>20/40+40/80

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A<20/20+40/40

→A<2 (2)

Từ (1),(2)→1<A<2

→A không là số tự nhiên

Bình luận (0)
QB
Xem chi tiết
NB
Xem chi tiết
QA
Xem chi tiết
H24
1 tháng 5 2021 lúc 14:27

a)Vì Oy,Oz cùng thuộc 1 nửa mặt phẳng tia Ox

&góc xOy<góc xOz(70 độ<140 độ)

Nên Oy nằm giữa 2 tia Ox và Oz

Tcó:góc xOy + góc yOz=góc xOz

Tsố:70 độ + góc yOz=140 độ

                    góc yOz=140 độ - 70 độ=70 độ

b)+)Vì Ot là tia phân giác của góc yOz

Nên góc yOt=góc tOz=góc yOz×1/2=70 độ×1/2=35 độ

    +)Vì Ot,Ox cùng thuộc 1 nửa mặt phẳng bờ Oz

& góc zOt<góc zOx(35 độ<140 độ)

Nên Ot nằm giữa 2 tia Ox&Oz

Tcó:góc xOt+góc tOz=góc xOz

Tsố:góc xOt+35 độ=140 độ

      góc xOt            =140 độ-35 độ=105 độ

Bình luận (0)
 Khách vãng lai đã xóa
QA
1 tháng 5 2021 lúc 14:35

bạn giúp mình vẽ hình cho câu 1 đc ko

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
DD
9 tháng 8 2016 lúc 20:32

Để quy đồng mẫu các phân số trong tổng A = 1/2 + 1/3 + 1/4 + ... + 1/100, ta chọn mẫu chung là tích của 2^6 với các thừa số lẻ nhỏ hơn 100. Gọi k1,k2,... k100 là các thừa số phụ tương ứng, tổng A có dạng: B=(k1+k2+k3+...+k100)/(2^6.3.5.7....99).
Trong 100 phân số của tổng A chỉ có duy nhất phân số 1/64 có mẫu chứa 2^6 nên trong các thừa số phụ k1,k2,...k100 chỉ có k64 (thừa số phụ của 1/64) là số lẻ (bằng 3.5.7....99), còn các thừa số phụ khác đều chẵn (vì chứa ít nhất một thừa số 2). Phân số B có mẫu chia hết cho 2 còn tử không chia hết cho 2, do đó B (tức là A) không thể là số tự nhiên.
Ngoài ra với trường hợp tổng quát, hạng tử cuối là 1/n (n là số tự nhiên), ta chọn mẫu chung là 2^k với các thừa số lẻ không vượt quá n, trong đó k là số lớn nhất mà 2^k <= n. Chỉ có thừa số phụ của 1/2^k là số lẻ còn các thừa số phụ khác đều chẵn.
Còn cách giải khác nữa cùng trong sách Nâng cao và phát triển Toán 6 tập hai bạn có thể tham khảo thêm nhé. Chúc bạn học giỏi!

Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)

Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)

Từ (*) và (**) ---> 3 < c < 4 ---> a ko phải là số tự nhiên.

====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> c ko phải là số tự nhiên.

Bình luận (0)
PL
Xem chi tiết
LA
11 tháng 5 2016 lúc 12:46

Muốn c/m M ko phải STN, chỉ cần chứng minh x<M<x+1

Bình luận (0)
PL
11 tháng 5 2016 lúc 12:51

ý mình là c/m như thế nào cơ? Bạn làm đầy đủ cho mình nhé!

Bình luận (0)