Những câu hỏi liên quan
NT
Xem chi tiết
CC
22 tháng 11 2021 lúc 18:39

ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc 

Bình luận (0)
 Khách vãng lai đã xóa
QN
Xem chi tiết
TS
18 tháng 6 2017 lúc 17:12

Vì p là số nguyên tố nên p có thể là 3 hoặc 2 dạng sau  : 3k + 1 và 3k + 2

Th1 : p= 3 

=> p + 10 = 3 + 10 = 13 ( thỏa mãn )

     p + 14 = 3 + 14 = 17 ( thỏa mãn )

Th2 : p = 3k + 1

=> p +14 = 3k + 1 + 14 = 3k + 15

                                   = 3(k+5) -> hợp số

Th3 : p = 3k + 2

=> p + 10 = 3k + 2 + 10 = 3k + 12

                                     = 3 ( k + 4 ) -> hợp số

Vậy p=3

^_^ ( Have a good day )

Bình luận (0)
TP
18 tháng 6 2017 lúc 17:05

a) Số nguyên tố p là : 3, 7.

Quỳnh Như thử lại là biết đúng sai nha 

~ Ai tk mk mk tk lại cho nha ~

Bình luận (0)
LK
15 tháng 11 2017 lúc 17:44

Vì p là số nguyên tố nên 

Xét p = 2 thì p+10=12 không phải là SNT (loại)

Xét p= 3 thì p+10=13

                   p+14=17 đều là số nguyên tố chọn

Xét p>3 thì p có dạng 3k+1 hoặc 3k+2

p=3k+1 thì p+14=3k+15 chia hết cho 3 loại

p=3k+2 thi p+10 =3k+ 12 chia hết cho 3 loại

vậy p = 3 

Bình luận (0)
MD
Xem chi tiết
TT
22 tháng 1 2017 lúc 20:30

Xin lỗi tớ chỉ trả lời đucợ phần a mà cx ko biết có đúng không nhưng tớ học dạng này rồi

a)

+ Nếu p = 2 thì p + 10 = 12 là hợp số

                       p + 20 = 22 là hợp số

\(\Rightarrow\)Loại

+ Nếu p = 3 thì p + 10 = 13 là Số nguyên tố

                       p + 20 = 23 là số nguyên tố

\(\Rightarrow\) Chọn

+ Nếu p > 3 thì p có dạng 3k + 1; 3k +2 ( k \(\in\)N* )

- Với p = 3k + 1 thì p + 20 = 3k +1 + 20 = 3k+21. Mà 21 \(⋮\)\(\Rightarrow\)21 là hợp số

- Với p = 3k +2 thì p + 10 = 3k + 2 + 10 = 3k + 12. Mà 12 \(⋮\)2,6,3,4 \(\Rightarrow\)12 là hợp số

\(\Rightarrow\) Loại

Vậy, p = 3

Bình luận (0)
H24
22 tháng 1 2017 lúc 20:18

123 nha

Bình luận (0)
H24
22 tháng 1 2017 lúc 20:18

123 nha

Bình luận (0)
TY
Xem chi tiết
H24
25 tháng 1 2017 lúc 21:22

a, Ta có: p = 2 => p + 10 = 12 là hợp số

              p = 3 => p + 10 = 13

                            p + 20 = 23

Vậy p = 3 thỏa mãn yêu cầu

Giả sử p > 3 thì p sẽ có dạng:

p = 3k + 1 hoặc p = 3k + 2

  Với p = 3k + 1 thì p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3

=> p + 20 là hợp số

  Với p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3

=> p + 10 là hợp số

Do đó: với p = 3 thỏa mãn yêu cầu đề bài

b, Ta có: p = 2 => p + 2 = 4 là hợp số

              p = 3 => p + 6 = 9 là hợp số

              p = 5 => p + 2 = 7

                            p + 6 = 11

                            p + 8 = 13

                            p + 14 = 19

Vậy p = 5 thỏa mãn

Giả sử p > 5 thì p sẽ có dạng:

p = 5k + 1; p = 5k + 2; p = 5k + 3; p = 5k + 4

  Với p = 5k + 1 thì: p + 14 = 5k + 1 + 14 = 5k + 15 \(⋮\)5

=> p + 14 là hợp số

  Với p = 5k + 2 thì: p + 8 = 5k + 2 + 8 = 5k + 10 \(⋮\)5

=> p + 8 là hợp số

  Với p = 5k + 3 thì: p + 2 = 5k + 3 + 2 = 5k + 5 \(⋮\)5

=> p + 2 là hợp số

  Với p = 5k + 4 thì: p + 6 = 5k + 4 + 6 = 5k + 10 \(⋮\)5

=> p + 6 là hợp số

Do đó: với p = 5 thỏa mãn yêu cầu bài toán

Bình luận (0)
H24
25 tháng 1 2017 lúc 21:08

a, p=3

b, p=5

đúng mà, bạn tk mk đi.

Bình luận (0)
TY
25 tháng 1 2017 lúc 21:12

Các bạn giải rõ ràng hộ mình nha

Bình luận (0)
TN
Xem chi tiết
ND
28 tháng 7 2016 lúc 21:23

Giải:

a, p=3

b,p=3

Bình luận (0)
HP
Xem chi tiết
H24
18 tháng 7 2015 lúc 19:20

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

Bình luận (0)
TL
18 tháng 7 2015 lúc 19:30

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

Bình luận (0)
My
14 tháng 8 2016 lúc 15:35

 câu a là p ko có giá trị chớ

Bình luận (0)
H24
Xem chi tiết
LC
Xem chi tiết
UI
10 tháng 12 2019 lúc 21:28

Xet \(p>3\Rightarrow\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)

Xet TH \(p=3k+1=>p+14=3k+15=3\left(k+5\right)\)

=> p khong nguyen to

Xet TH \(p=3k+2\Rightarrow p+10=3k+12=3\left(k+4\right)\)

=> p khong nguyen to

Neu \(p< 3=>\hept{\begin{cases}p=0\\p=1\\p=2\end{cases}}\) thay vao p+10 va p+14 dau ko thoa man

Neu p=3 thay vao p+10 va p+14 ta thay thoa man

Vay p =3

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
H24
11 tháng 11 2015 lúc 20:06

vi p la so nguyen to

đặt p = có dạng 3k, 3k+1, 3k+2

Thay vào

+>p+10=3k+10

p+14=3k+14(chọn)

+>p+10=3k+1+10=3k+11

p+14=3k+1+14=3k+15=>loại

+>p+10=3k+2+10=3k+12=>loại

Từ các bt trên suy ra snt cần tìm là 3

Các câu sau làm tuong tu

 

Bình luận (0)
H24
Xem chi tiết