Những câu hỏi liên quan
SM
Xem chi tiết
TA
24 tháng 7 2015 lúc 15:47

Super Man mà lại còn phải lên đây để hỏi bài à?

Bình luận (0)
SM
Xem chi tiết
HA
28 tháng 7 2016 lúc 15:24

Super man hỏi bài? Nghịch lý

Bình luận (0)
KQ
18 tháng 12 2020 lúc 15:57

ok

 

Bình luận (0)
SM
Xem chi tiết
ND
Xem chi tiết
H24
8 tháng 3 2019 lúc 9:50

ĐK: \(\hept{\begin{cases}a\ne-b\\b\ne-c\\c\ne-a\end{cases}}\)

Xét thương: \(\frac{a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\).Do a,b,c thuộc N nên:

\(a⋮a+b\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\) (vì \(a⋮a\)) (1)

Khi đó: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1+\frac{c}{c+a}\).Giả sử \(a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)⋮\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Thì \(1+\frac{c}{c+a}\inℕ\Rightarrow\frac{c}{c+a}\inℕ\Leftrightarrow\orbr{\begin{cases}c=0\\a=0\end{cases}}\) (2)

Từ (1) và (2) suy ra:  \(\orbr{\begin{cases}a=b=0\\b=c=0\end{cases}}...\left(h\right)...c=a=0\) 


Suy ra \(\orbr{\begin{cases}a=-b=0\\b=-c=0\end{cases}..\left(h\right)..c=-a=0}\) (Mâu thuẫn với đk)

Từ đây suy ra điều giả sử là sai.Suy rađpcm.

Bình luận (0)
DK
Xem chi tiết
H24
28 tháng 6 2021 lúc 16:46

`(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

`VT>=0`

Dấu "=" xảy ra khi `a=b=c`

Bình luận (0)
H24
28 tháng 6 2021 lúc 16:53

`a^3+b^3+c^3=3abc`

`<=>a^3+b^3+c^3-3abc=0`

`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`

`**a+b+c=0`

`**a^2+b^2+c^2=ab+bc+ca`

`<=>a=b=c`

Bình luận (0)
NM
Xem chi tiết
DV
10 tháng 6 2015 lúc 8:21

c chia 5 dư 2 => c = 5k + 2

a,b chia 5 dư 3 => a = 5m + 3 ; b = 5n + 3

a) a + c = 5k + 2 + 5m + 3 = 5k + 5m + 5 = 5(k + m + 1) chia hết cho 5.

   b + c = 5n + 3 + 5k + 2 = 5n + 5k + 5 = 5(n + k + 1) chia hết cho 5.

    a - b = 5m + 3 - 5n + 3 = 5m - 5n = 5(m - n) chia hết cho 3

b) a + b + c = 5m + 3 + 5n + 3 + 5k + 2 = 5m + 5n + 5k + 5 + 3 = 5(m + n + 1) + 3 ko chia hết cho 5

    a + b - c = 5m + 3 + 5n + 3 - 5k + 2 = 5m + 5n - 5k + 4 = 5(m + n - k) + 4 ko chia hết cho 5

    a + c - b = 5m + 3 + 5k + 2 - 5n + 3 = 5m + 5k - 5n + 2 = 5(m + k - n) + 2 ko chia hết cho 5.

Bình luận (0)
GP
Xem chi tiết
NT
7 tháng 8 2018 lúc 16:38

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

Bình luận (0)
NT
18 tháng 1 2021 lúc 22:28

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Dấu ''='' xảy ra <=> a = b = c = 1 

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 6 2021 lúc 16:43

`a^2+b^2+c^2+3=2(a+b+c)`

`<=>a^2+b^2+c^2+3-2a-2b-2c=0`

`<=>a^2-2a+1+b^2-2b+1+c^2-2c+1=0`

`<=>(a-1)^2+(b-1)^2+(c-1)^2=0`

`VT>=0`

Dấu "=" `<=>a=b=c=1`

Áp dụng bđt cosi ta có:

`a^2+b^2>=2ab`

`b^2+c^2>=2bc`

`c^2+a^2>=2ca`

`=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`

`=>a^2+b^2+c^2>=ab+bc+ca`

`=>(a+b+c)^2>=3(ab+bc+ca)`

Dấu '=" `<=>a=b=c`

3 không rõ đề

Bình luận (0)
SM
Xem chi tiết
NC
2 tháng 1 2020 lúc 15:05

1. Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
GG

1) 

Ta có : 

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\Leftrightarrow\frac{1}{c}.\frac{2}{1}=\frac{\left(a+b\right)}{ab}\)

\(\Leftrightarrow\frac{2}{c}=\frac{\left(a+b\right)}{ab}\)

\(\Leftrightarrow2ab=ac+bc\)                (1)

Lại có :

 \(\frac{a}{b}=\frac{a-c}{c-b}\)

\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Leftrightarrow ac-ab=ab-bc\)

\(\Leftrightarrow2ab=ac+bc\)            (2)

Từ (1) và (2) :

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NC
9 tháng 7 2019 lúc 14:54

1) 

+) a, b, c là các số nguyên tố lớn hơn 3

=> a, b, c sẽ có dạng 3k+1  hoặc 3k+2

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3

=> (a-b)(b-c)(c-a) chia hết cho 3 (1)

+) a,b,c là các số nguyên tố lớn hơn 3 

=> a, b, c là các số lẻ và không chia hết cho 4

=> a,b, c sẽ có dang: 4k+1; 4k+3

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4

th1: Cả 3 số chia hết cho 4

=> (a-b)(b-c)(c-a) chia hết cho 64   (2)

Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192  vì (64;3)=1

=> (a-b)(b-c)(c-a) chia hết cho 48

th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2

=> (a-b)(b-c)(c-a) chia hết cho 32  (3)

Từ (1) , (3) 

=> (a-b)(b-c)(c-a) chia hết cho 32.3=96  ( vì (3;32)=1)

=>  (a-b)(b-c)(c-a) chia hết cho 48

Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2

=>  (a-b)(b-c)(c-a) chia hết cho 16

Vì (16; 3)=1

=>  (a-b)(b-c)(c-a) chia hết cho 16.3=48

Như vậy với a,b,c là số nguyên tố lớn hơn 3

thì  (a-b)(b-c)(c-a) chia hết cho 48

Bình luận (0)
MA
Xem chi tiết
H24
14 tháng 2 2022 lúc 13:57

áp dụng tính chất day tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}\)=1

\(B=\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1+1+1=3\)

vậy B=3

Bình luận (0)