Những câu hỏi liên quan
TH
Xem chi tiết
TH
Xem chi tiết
ZZ
5 tháng 11 2019 lúc 19:53

\(A=4x^2-4xy+5y^2+20x-6y+2044\)

\(=\left(4x^2-4xy+y^2\right)+20x-6y+4y^2+2044\)

\(=\left(2x-y\right)^2+10\left(2x-y\right)+25+\left(4y^2+4y+1\right)+2018\)

\(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\ge2018\)

Dấu "=" xảy ra tại \(y=-\frac{1}{2};x=-\frac{11}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
5 tháng 11 2019 lúc 19:59

Ta có \(A=4x^2-4xy+5y^2+20x-6y+2044\)

            \(=4x^2-4x\left(y-5\right)+\left(y-5\right)^2+4y^2+4y+1+2018\)

            \(=\left(2x-y+5\right)^2+\left(2y+1\right)^2+2018\)

Vì...\(\Rightarrow A\ge2018\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+5=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{11}{4}\\y=-\frac{1}{2}\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa
TH
5 tháng 11 2019 lúc 20:48

Mấy bạn giải chi tiết ra giùm mình

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
MQ
2 tháng 7 2019 lúc 18:42

\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-5\right)^2}\)

\(A=\left|2x-1\right|+\left|5-2x\right|\ge\left|2x-1+5-2x\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-1\right)\left(5-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{1}{2}\le x\le\frac{5}{2}\)

Mấy bài bn đăng tương tự :) 

Bình luận (0)
NL
15 tháng 7 2020 lúc 17:19

Bài làm:

Ta có: \(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}\)

\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-5\right)^2}\)

\(A=\left|2x-1\right|+\left|2x-5\right|\)

\(A=\left|1-2x\right|+\left|2x-5\right|\)\(\ge\left|1-2x+2x-5\right|=\left|-4\right|=4\)

Dấu "=" xảy ra khi: \(\left(1-2x\right)\left(2x-5\right)\ge0\)

Giải BPT trên ra ta được \(\frac{5}{2}\ge x\ge\frac{1}{2}\)

Vậy \(Min\left(A\right)=4\Leftrightarrow\frac{5}{2}\ge x\ge\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TS
Xem chi tiết
NL
Xem chi tiết
CK
Xem chi tiết
AH
11 tháng 7 2023 lúc 23:52

Bài 1:

a. $M=x^2+4x+9=(x^2+4x+4)+5=(x+2)^2+5\geq 0+5=5$ do $(x+2)^2\geq 0$ với mọi $x$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$
b.

$N=x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1\geq 1$ do $(x-10)^2\geq 0$ với mọi $x$

Vậy $N_{\min}=1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$

Bình luận (0)
AH
11 tháng 7 2023 lúc 23:54

Bài 2:

a.

$C=-y^2+6y-15$
$-C=y^2-6y+15=(y^2-6y+9)+6=(y-3)^2+6\geq 6$ (do $(y-3)^2\geq 0$ với mọi $y$)

$\Rightarrow C\leq -6$

Vậy $C_{\max}=-6$. Giá trị này đạt tại $y-3=0\Leftrightarrow y=3$
b.

$-B=x^2-9x+12=(x^2-9x+4,5^2)-8,25=(x-4,5)^2-8,25\geq -8,25$ do $(x-4,5)^2\geq 0$ với mọi $x$

$\Rightarrow B\leq 8,25$
Vậy $B_{\max}=8,25$. Giá trị này đạt tại $x-4,5=0\Leftrightarrow x=4,5$

Bình luận (0)
NA
Xem chi tiết
H24
25 tháng 9 2020 lúc 19:20

             Bài làm :

\(1\text{)}x^2-20x+2020=\left(x^2-20x+100\right)+1920=\left(x-10\right)^2+1920\)

Vì (x-10)2 ≥ 0 với mọi x

\(\Rightarrow\left(x-10\right)^2+1920\ge1920\forall x\)

Dấu "=" xảy ra khi

(x-10)2 = 0

<=> x-10=0

<=> x=10

Vậy GTNN của biểu thức là : 1920 <=> x=10

\(\text{2)}-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)

Vì -(x-2)2 ≤ 0 với mọi x

\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)

Dấu "=" xảu ra khi :

x-2=0

<=> x=2

Vậy GTLN của biểu thức là -1 <=> x=2

Bình luận (0)
 Khách vãng lai đã xóa
LD
25 tháng 9 2020 lúc 19:25

x2 - 20x + 2020 = ( x2 - 20x + 100 ) + 1920 = ( x - 10 )2 + 1920 ≥ 1920 ∀ x

Dấu "=" xảy ra <=> x = 10 

Vậy GTNN của biểu thức = 1920 <=> x = 10

-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 ∀ x

Dấu "=" xảy ra <=> x = 2

Vậy GTLN của biểu thức = -1 <=> x = 2

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
H24
8 tháng 9 2017 lúc 20:27

1)

a)  \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)

\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)

\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)

Dấu bằng xảy ra khi x + 2 = 0

                               x      = -2

Vậy GTNN của M bằng 5 khi x = -2

b)  \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)

\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)

\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)

Dấu bằng xảy ra khi x - 10 = 0

                              x        =   10

Vậy GTNN của N bằng 1 khi x = 10

2)

a)  \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)

\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)

\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)

Dấu bằng xảy ra khi y - 3 = 0

                               y      = 3

Vậy GTLN của C bằng -6 khi y = 3

b)  \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)

\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)

\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)

Dấu bằng xảy ra khi  \(x-\frac{9}{2}=0\)

                                \(x=\frac{9}{2}\)

Vậy GTLN của B bằng  \(\frac{33}{4}\)khi x =  \(\frac{9}{2}\)

Bình luận (0)
LD
8 tháng 9 2017 lúc 20:18

a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5 

Vì : \(\left(x+2\right)^2\ge0\forall x\in R\) 

Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)

Vậy Mmin = 5 khi x = -2

b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1 

Vì \(\left(x-10\right)^2\ge0\forall x\in R\)

Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)

Vậy Nmin = 1 khi x = 10

Bài 2 : 

a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6

Vì \(-\left(y-3\right)^2\le0\forall x\in R\)

 Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)

Vậy Cmin = -6 khi y = 3 

b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x +  \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)

Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)

Nên :  B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)

Vậy Bmin \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)

Bình luận (0)
H24
Xem chi tiết
MH
11 tháng 6 2017 lúc 14:59

a. x2 - 3x + 5

= x2 - 2.x.3/2 + 9/4 + 5 - 9/4

= (x - 3/2)2 + 11/4 \(\ge\)11/4

Vậy GTNN của biểu thức là 11/4 <=> x - 3/2 = 0 <=> x = 3/2

b. 4x2 + 4x + 2

= (2x)2 + 2.2x.1 + 1 + 1

= (2x + 1)2 + 1 \(\ge\)1

Vậy GTNN của biểu thức là 1 <=> 2x + 1 = 0 <=> x = -1/2

c. x2 - 20x + 101

= x2 - 2.x.10 + 100 + 1

= (x - 10)2 + 1 \(\ge\)1

Vậy GTNN của biểu thức là 1 <=> x - 10 = 0 <=> x = 10.

Bình luận (0)