tinh
1+2+2mu2+2m3 +..................+2mu49+2mu50
tinh S=1/2+1/2mu2+1/2mu3+...+1/2mu20
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{20}}\)
=> \(2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{19}}\)
=> \(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)
=> \(S=1-\frac{1}{2^{20}}\)
2+2mu2+...+2mu500
tinh rut gon
Đạt A = 2 + 2 2 + ... + 2 500
2A = 2 2 + 2 3 + .... + 2 501
2A - A = ( 2 2 + 2 3 + .... + 2 501 )
- ( 2 + 2 2 + ... + 2 500 )
A = 2 501 - 2
tinh S=1mu2+2mu2+.....+10mu2
S = 12 + 22 + ... + 102
S = 1 + 4 + ... + 100
S = 385
2S=2+22+23+....+210+211
2S-S=211-1
S=211-1
cho bieu thuc A= 2+2mu2 + 2mu3 +.....+2mu40
chung to rang A chia het cho 3, 7
tinh tong A . tim so tu nhien x de A+2 = 2 mua x-1
Cho b=1+2+2mu2+2mu3+...+2mu6,A=2mu2+2mu3+2mu4+..+2mutam chứng minh rằng A=4B
\(B=1+2+2^2+...+2^6.\)
\(=>4B=2^2+2^3+...+2^8\)\(\left(1\right)\)
\(A=2^2+2^3+...+2^8\)\(\left(2\right)\)
Từ (1) và (2)
=> A = 4B
\(S=\dfrac{2mu2}{1.2}+\dfrac{2mu2}{2.3}+\dfrac{2mu2}{3.4}+...+\dfrac{2mu2}{2022.2023}\)
(mu = mũ)
\(S=\dfrac{2^2}{1.2}+\dfrac{2^2}{2.3}+\dfrac{2^2}{3.4}+...+\dfrac{2^2}{2022.2023}\)
\(S=2^2.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)
\(S=2^2.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(S=2^2.\left(\dfrac{1}{1}-\dfrac{1}{2023}\right)\)
\(S=2^2.\dfrac{2022}{2023}\)
\(S=\dfrac{2^2.2022}{2023}=\dfrac{8088}{2023}\)
1\2+1\2mu2+1\2mu3+......+1\2mu100
cho s = 1+2+2mu2+...+2mu2018 tính s
22s=2+22+...+22020
4S-S=(2+22+...+22020)-(1+2+22+....+22018)
3S=22020-1
S=(22020-1):3
\(S=1+2+2^2+...+2^{2018}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{2019}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+...+2^{2018}\right)\)
\(\Rightarrow S=2^{2019}-1\)
Vậy...(tự kết luận)
:)))