Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TT
Xem chi tiết
CL
Xem chi tiết
HD
Xem chi tiết
.
3 tháng 1 2020 lúc 19:37

Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

           \(\frac{1}{5^2}=\frac{1}{5.5}< \frac{1}{4.5}\)     

           \(\frac{1}{6^2}=\frac{1}{6.6}< \frac{1}{5.6}\)

            ...

            \(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow\)K<\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

K<\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

K<\(\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)

\(\Rightarrow K< \frac{1}{3}\)  (1)

Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}=\frac{1}{16}\)

            \(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)

            \(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)

             ...

             \(\frac{1}{99^2}=\frac{1}{99.99}>\frac{1}{99.100}\)

             \(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)

\(\Rightarrow K>\frac{1}{16}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)

K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)

K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{101}>\frac{1}{5}\)  (2)

Từ (1) và (2)

\(\Rightarrow\frac{1}{5}< K< \frac{1}{3}\)

Vậy \(\frac{1}{5}< K< \frac{1}{3}.\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
TT
6 tháng 5 2019 lúc 18:20

Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha

Bình luận (0)
NA
6 tháng 5 2019 lúc 18:22

a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

                                                                                   \(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)

=> đpcm

Study well ! >_<

Bình luận (0)
H24
Xem chi tiết
KN
5 tháng 5 2019 lúc 11:25

Gọi \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\forall A>\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

\(\Leftrightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< A< \frac{1}{2}\)

\(\Rightarrowđpcm\)

Bình luận (0)
H24

\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy

Bình luận (0)
LH
Xem chi tiết
DH
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LD
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Bình luận (0)
NN
10 tháng 12 2017 lúc 21:36

Thanks bạn

Bình luận (0)
DL
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
NH
Xem chi tiết
AH
31 tháng 3 2023 lúc 16:41

 

Lời giải:

$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1000^2}$

$< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}$

$=\frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$

$=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$

$=\frac{1}{4}+\frac{1}{2}-\frac{1}{1000}$

$< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}$

Ta có đpcm.

Bình luận (0)