Giai Phuong trinh \(x^4=3x^2+4x-\frac{24}{7}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giai phuong trinh
a) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3x-24}\)
b) \(\frac{1}{3-x}+\frac{14}{x^2-9}=\frac{x-4}{3+x}+\frac{7}{3+x}\)
a) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3x-24}\) \(ĐK:x\ne8\)
\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3\left(x-8\right)}\)
\(\Leftrightarrow\frac{3.3}{6.\left(x-8\right)}+\frac{6.\left(3x-20\right)}{6\left(x-8\right)}-\frac{2\left(3x-102\right)}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow\frac{9+18x-120-6x+204}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow\frac{12x+93}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow8\left(12x+93\right)=-6\left(x-8\right)\)
\(\Leftrightarrow96x+744=-6x+48\)
\(\Leftrightarrow102x=-696\)
\(\Leftrightarrow x=\frac{-116}{17}\) (nhận)
Vậy .....
b) \(\frac{1}{3-x}+\frac{14}{x^2-9}=\frac{x-4}{3+x}+\frac{7}{3+x}\) \(ĐK:x\ne\pm3\)
\(\Leftrightarrow\frac{1}{3-x}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{x-4}{3+x}+\frac{7}{3+x}\)
\(\Leftrightarrow-\frac{3+x}{\left(x-3\right)\left(3+x\right)}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{-3-x+14}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)
\(\Leftrightarrow-3-x+14=x^2-3x-4x+12+7x-21\)
\(\Leftrightarrow x=-5\) (nhận)
Vậy ....
a, (3x-7)^2-4(x+1)^2=0
b,(x+1)^2.(x+2)+(x+1)^2.(x-2)=-24
giai phuong trinh nha
giai phuong trinh: b,|x+4|+|3x-6|=4x-3
Ta có:
\(\left\{{}\begin{matrix}\left|x+4\right|\ge0\\\left|3x-6\right|\ge0\end{matrix}\right.\)\(\forall x\)
\(\Rightarrow\)|x+4|+|3x-6|\(\ge0\forall x\)
\(\Leftrightarrow4x-3\ge0\)
\(\Leftrightarrow x\ge\frac{3}{4}\)
\(\Rightarrow\left|x+4\right|=x+4\)
Xét trường hợp:
với \(\frac{3}{4}\le x< 2\)
\(\Rightarrow\left|3x-6\right|=6-3x\)
=> x+4+6-3x=4x-3
Tự giải ( nhớ đối chiếu đk)
Với x\(\ge2\)
\(\Rightarrow\left|3x-6\right|=3x-6\)
=> x+4-6+3x=4x-3
Tự giải ( nhớ đối chiếu đk)
KL:.......................
giai phuong trinh : \(\frac{4x}{x^2-5x+6}+\frac{3x}{x^2-7x+6}=6\)
giai phuong trinh:
a)2x(x+5)-(x-3)^2 = x^2 +6
b)(4x+7)(x-5)-3x^2=x(x-1)
a, 2x(x + 5) - (x - 3)2 = x2 + 6
<=> 2x2 + 10x - (x2 - 6x + 9) = x2 + 6
<=> 2x2 + 10x - x2 + 6x - 9 - x2 = 6
<=> 16x = 6 + 9
<=> 16x = 15
<=> x = 15/16
Vậy...
b, (4x + 7)(x - 5) - 3x2 = x(x - 1)
<=> 4x2 - 20x + 7x - 35 - 3x2 = x2 - x
<=> 4x2 - 20x + 7x - 3x2 - x2 + x = 35
<=> -12x = 35
<=> x = -35/12
Vậy...
giai cac phuong trinh sau
a, (3x-1)(4x-8)=0
b,(x-2)(1-3x)=0
c,(x-3)(x+4)-(x-3)(2x-1)=0
d,(x+1)(x+2)=2x(x+2)
a)(3x-1)(4x-8)=0
⇔3x-1=0 hoặc 4x-8=0
1.3x-1=0⇔3x=1⇔x=1/3
2.4x-8=0⇔4x=8⇔x=2
phương trình có 2 nghiệm:x=1/3 và x=2
b)(x-2)(1-3x)=0
⇔x-2=0 hoặc 1-3x=0
1.x-2=0⇔x=2
2.1-3x=0⇔-3x=1⇔x=-1/3
phương trình có 2 nghiệm:x=2 và x=-1/3
c)(x-3)(x+4)-(x-3)(2x-1)=0
⇔(x+4)(2x-1)=0
⇔x+4=0 hoặc 2x-1=0
1.x+4=0⇔x=-4
2.2x-1=0⇔2x=1⇔x=1/2
phương trình có hai nghiệm:x=-4 và x=1/2
d)(x+1)(x+2)=2x(x+2)
⇔(x+1)(x+2)-2x(x+2)=0
⇔2x(x+1)=0
⇔2x=0 hoặc x+1=0
1.2x=0⇔x=0
2.x+1=0⇔x=-1
phương trình có 2 nghiệm:x=0 và x=-1
giai phuong trinh \(x^4-2x^3+4x^2-3x-4=0\)
GIAI PHUONG TRINH:
\(2\left(\sqrt{\frac{x-1}{4}-3}\right)=2\sqrt{\frac{4x-4}{9}}-\frac{1}{3}\)
giai phuong trinh :\(\frac{2}{x^2+4x+3}\)+\(\frac{5}{x^2+11x+24}\)+\(\frac{2}{x^2+18x+80}\)=\(\frac{9}{52}\)
\(\Rightarrow\frac{2}{x^2+x+3x+3}+\frac{5}{x^2+3x+8x+24}+\frac{2}{x^2+10x+8x+80}=\frac{9}{52}\)
\(\Rightarrow\frac{2}{x\left(x+1\right)+3\left(x+1\right)}+\frac{5}{x\left(x+3\right)+8\left(x+3\right)}+\frac{2}{x\left(x+10\right)+8\left(x+10\right)}=\frac{9}{52}\)
\(\Rightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)
\(\Rightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+10}=\frac{9}{52}\)
\(\Rightarrow\frac{1}{x+1}-\frac{1}{x+10}=\frac{9}{52}\Rightarrow\frac{x+10-x-1}{\left(x+1\right)\left(x+10\right)}=\frac{9}{52}\Rightarrow\frac{9}{x^2+11x+10}=\frac{9}{52}\)
\(\Rightarrow x^2+11x+10=52\Rightarrow x^2+2\cdot\frac{11}{2}x+\frac{121}{4}-\frac{81}{4}=52\)
\(\Rightarrow\left(x+\frac{11}{2}\right)^2=\frac{289}{4}\Rightarrow x+\frac{11}{2}=\frac{17}{2}\Rightarrow x=\frac{17}{2}-\frac{11}{2}=\frac{6}{2}=3\Rightarrow x=3\)
\(\frac{2}{x^2+4x+3}+\frac{5}{x^2+11x+24}+\frac{2}{x^2+18x+80}=\frac{9}{52}\)(ĐKXĐ: x khác -1;-3;-8;-10)
\(\Leftrightarrow\frac{2}{x^2+x+3x+3}+\frac{5}{x^2+3x+8x+24}+\frac{2}{x^2+8x+10x+80}=\frac{9}{52}\)
\(\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)
\(\Leftrightarrow\frac{2\left(x+8\right)\left(x+10\right)+5\left(x+1\right)\left(x+10\right)+2\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)
\(\Leftrightarrow\frac{9x^2+99x+216}{x^4+22x^3+155x^2+374x+240}=\frac{9}{52}\)
\(\Rightarrow468x^2+5148x+11232=9x^4+198x^3+1395x^2+3366x+2160\)
\(\Leftrightarrow9x^4+198x^3+927x^2-1782x-9072=0\)
\(\Leftrightarrow x^4+22x^3+103x^2-198x-1008=0\)
\(\Leftrightarrow x^4-3x^3+25x^3-75x^2+178x^2-534x+336x-1008=0\)
\(\Leftrightarrow x^3\left(x-3\right)+25x^2\left(x-3\right)+178x\left(x-3\right)+336\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^3+25x^2+178x+336\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2+22x^2+66x+112x+336\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[x^2\left(x+3\right)+22x\left(x+3\right)+112\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+22x+112\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+8x+14x+112\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)\left[x\left(x+8\right)+14\left(x+8\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)\left(x+8\right)\left(x+14\right)=0\)
\(\Leftrightarrow\frac{\orbr{\begin{cases}x+3=0\\x-3=0\end{cases}}}{\orbr{\begin{cases}x+8=0\\x+14=0\end{cases}}}\Leftrightarrow\frac{\orbr{\begin{cases}x=-3\left(\times\right)\\x=3\end{cases}}}{\orbr{\begin{cases}x=-8\left(\times\right)\\x=-14\end{cases}}}\)(Vì x=-3 và x=-8 không t/m ĐKXĐ)
Vậy tập nghiệm của pt là \(S=\left\{3;-14\right\}.\)