Tính giá trị biểu thức Q = \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
tính giá trị biểu thức sau
\(2^{100}-2^{99}-2^{98}-2^{97}-...-2^2-2-1\)
\(=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2+1\right)\)
Đặt \(B=1+2+2^2+...+2^{98}+2^{99}\)
\(\Rightarrow2B=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow B=\left(2+2^2+2^3+..+2^{100}\right)-\left(1+2+2^2+...+2^{99}\right)\)
\(\Rightarrow B=2^{100}-1\)
\(\Rightarrow2^{100}-2^{99}-2^{98}-....-2-1=2^{100}-\left(2^{100}-1\right)\)
\(=1\)
Tính giá trị các biểu thức sau:
a) A = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100
b) B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
Bài 1: Tính giá trị biểu thức:
\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)2
#)Giải :
B = 2100 - 299 + 298 - 297 + ... + 22 - 2
=>2B = 2101 - 2100 + 299 - 298 + ... + 23 - 22
=>2B + B = ( 2101 - 2100 + 299 - 298 + ... + 23 - 22 ) + ( 2100 - 299 + 298 - 297 + ... + 22 - 2 )
=>3B = 2201 - 2
=>B = 2201 - 2 / 3
\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow2B+B=2^{101}-2^2\)
\(\Rightarrow3B=2^{101}-2^2\)
\(\Rightarrow B=\frac{2^{101}-2^2}{3}\)
Tính giá trị biểu thức sau:
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
Tính giá trị biểu thức sau :
A= \(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(A+1=2^{100}-2^{99}+2^{98}-...-2+1.\)
\(3\cdot\left(A+1\right)=\left(2+1\right)\left(2^{100}-2^{99}+2^{98}-...-2+1\right).\)
\(3\cdot\left(A+1\right)=2^{101}+1\)
\(A=\frac{1}{3}\cdot\left(2^{101}+1\right)-1=\frac{2^{101}-2}{3}\)
tính giá trị biểu thức 1-2+3-4+5-6+...+97-98+99-100+101
chắc là 51 nhé!!!!!!!!!!!!!!!!!!!!!!!!!
\(1-2+3-4+5-6+.......+97-98+99-100+101\)
\(=\left(1-2\right)+\left(3-4\right)+\left(4-5\right)+.....+\left(97-98\right)+\left(99-100\right)+101\)
\(=50.\left(-1\right)+101=51\)
Tính giá trị biểu thức sau:
D = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100
D = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
tính giá trị biểu thức A\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
\(\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}=\frac{100-1}{1}+\frac{100-2}{2}+...+\frac{100-99}{99}\)
\(=\frac{100}{1}-1+\frac{100}{2}-1+...+\frac{100}{99}-1=\left(\frac{100}{1}+\frac{100}{2}+...+\frac{100}{99}\right)-\left(1+1+...+1\right)\)
\(100+\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}\right)-99=1+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}}=\frac{B}{100B}=\frac{1}{100}\)
Tính giá trị biểu thức:
2100-299-298-297-......-22-2-1