Những câu hỏi liên quan
H24
Xem chi tiết
IY
Xem chi tiết
ND
13 tháng 1 2019 lúc 21:47

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

Bình luận (0)
ND
13 tháng 1 2019 lúc 22:29

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

Bình luận (0)
DH
Xem chi tiết
KK
1 tháng 5 2022 lúc 20:52

undefined

Bình luận (2)
PC
Xem chi tiết
PT
Xem chi tiết
LV
Xem chi tiết
TH
Xem chi tiết
NA
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
ND
17 tháng 6 2020 lúc 21:23

Bài làm:

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)

\(\Rightarrow3\left(x+y\right)=xy\)

\(\Leftrightarrow3x-xy+3y=0\)\(\Leftrightarrow\left(3x-xy\right)+\left(3y-9\right)=-9\)

\(\Leftrightarrow x\left(3-y\right)-3\left(3-y\right)=-9\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9\)mà \(9=1.9=3.3=\left(-1\right)\left(-9\right)=\left(-3\right)\left(-3\right)\)

Vì x,y là các số nguyên dương

Ta xét các trường hợp sau:

+TH1: \(\hept{\begin{cases}x-3=1\\y-3=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\x=12\end{cases}}\)

+TH2: \(\hept{\begin{cases}x-3=9\\y-3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=12\\y=4\end{cases}}\)

+TH3: \(\hept{\begin{cases}x-3=3\\y-3=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=6\end{cases}}}\)

Vậy có 3 cặp số (x;y) nguyên dương thỏa mãn: \(\left(4;12\right);\left(12;4\right);\left(6;6\right)\)


 

Bình luận (0)
 Khách vãng lai đã xóa
H24
17 tháng 6 2020 lúc 22:03

Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)

\(\Leftrightarrow3\left(x+y\right)=xy\)

\(\Leftrightarrow3x+3y-xy=0\)

\(\Leftrightarrow\left(3x-xy\right)+\left(3y-9\right)=0\)

\(\Leftrightarrow x\left(3-y\right)-3\left(3-y\right)=-9\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9\)

Mà \(9=1,9=3,3=\left(-1\right)\left(-9\right)=\left(-3\right)\left(-3\right)\)

Vì xy là các số nguyên dương
Xét các TH sau:

\(TH_1\hept{\begin{cases}x-3=1\\y-3=9\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=12\end{cases}}}\)(tm)

\(TH_2\hept{\begin{cases}x-3=9\\x-3=1\end{cases}\Rightarrow\hept{\begin{cases}x=12\\x=4\end{cases}}}\)(tm)

\(TH_3\hept{\begin{cases}x-3=3\\x-3=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=6\end{cases}}}\)(tm)

VẬy ta có 3 cặp (x;y) tm là (4;12);(12;4);(6;6)

Vậy 

Bình luận (0)
 Khách vãng lai đã xóa