Chứng tỏ rằng đa thức P(x)=-3x2+6x+5 vô nghiệm, với x là số thực
Cho hai đa thức:
P x = x 5 - 3 x 2 + 7 x 4 - 9 x 3 + x 2 - 1 4 x
Q x = 5 x 4 - x 5 + x 2 - 2 x 3 + 3 x 2 - 1 4
Chứng tỏ rằng x = 0 là nghiệm của đa thức P(x) nhưng không phải là nghiệm của đa thức Q(x)
Chứng tỏ rằng đa thức A( x ) = 0 - x^5 + 2 ko có nghiệm với mọi số thực x
Bn cho đa thức A(x) = 0 sau đó tính và viết câu kết luận
mk nghĩ là thế!! =))
Chứng tỏ rằng đa thức x^2 + 4x +5 vô nghiệm
Đặt f(x)= \(x^2+4x+5\) \(=x^2+2x+2x+4+1\)
\(=\left(x^2+2x\right)+\left(2x+4\right)+1\)
\(=x\left(x+2\right)+2\left(x+2\right)+1\)
\(=\left(x+2\right)\left(x+2\right)+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\)
\(\Rightarrow f\left(x\right)>0\forall x\)
=> Đa thức f(x) trên vô nghiệm
Ta có : \(x^2+4x+5=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\)
\(\Rightarrow x^2+4x+5>0\)
\(\Rightarrow\) Đa thức \(x^2+4x+5\) vô nghiệm
Chứng tỏ đa thức sau vô nghiệm:
\(A\left(x\right)=2x^2-6x+2020\)
Giúp mình với ạ!
\(\text{∆}'=3^2-2.2020\)
\(=-4031< 0\)
⇒ phương trình vô nghiệm
Vì 2x^2-6x > 0 với mọi x
=> 2x^2-6x+2020 > 0+2020 với mọi x
=> 2x^2-6x+2020 > 2020 với mọi x
=> A(x) > 0 ( khác 0 )
=> A(x) vô nghiệm
Chứng tỏ rằng đa thức P (x)=−x^8 x^5−x^2 x 1 vô nghiệm
Bài 15: Cho đa thức: P(x)=x4+3x2+3
a) Tính P(1);P(-1)
b) Chứng tỏ rằng đa thức trên ko có nghiệm
a)\(P\left(1\right)=1^4+3.1^2+3=1+3.1+3=7\)
\(P\left(-1\right)=\left(-1\right)^4+3\left(-1\right)^2+3=1+3.1+3=7\)
ta có
\(x^4\ge0\forall x\)
\(x^2\ge0\forall x\)
\(=>x^4+3x^2\ge0\)
mà 3 > 0
\(=>x^4+3x^2+3>0\)
hay đa thức P(x) ko có nghiệm
Chứng tỏ rằng đa thức \(f\left(x\right)=-x^8+x^5-x^2+x+1\)vô nghiệm
không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp
Cho đa thức P(x)= x2 - 6x + 12. Chứng tỏ rằng đa thức trên không có nghiệm
\(x^2-6x+12\)
\(=x^2-3x-3x+9+3\)
\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)
\(=x\left(x-3\right)-3\left(x-3\right)+3\)
\(=\left(x-3\right)\left(x-3\right)+3\)
\(=\left(x-3\right)^2+3\)
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3>0\)
Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm
Bài 1: Cho đa thức bậc nhất: f(x) = ax + b và g(x) = bx + a (a và b khác 0). Giả sử đa thức f(x) có nghiệm là x0, tìm nghiệm của đa thức g(x)
Bài 2: Chứng tỏ rằng f(x) = -8x4 + 6x3 - 4x2 + 2x - 1 không có nghiệm nguyên.
Bài 3: Cho đa thức f(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x thuộc Z. Chứng tỏ rằng 6a và 2b là các số nguyên