Những câu hỏi liên quan
H24
Xem chi tiết
BV
7 tháng 4 2018 lúc 20:38

                   TH1:p<3

                   +Vì p<3;mà p là số nguyên tố =>p=2.

                   Với p=2 ta có:p3+2=23+2=8+2=10(là hợp số nên loại)

                   TH2:p>3

                   +vì p>3 nên=>p=6k+1 hoặc p=6k+5.

                   Với p=6k+1 ta có :p3+2=(6k+1)3+2=6k3+1+2=6k3+3:3(là  hợp số nên loại)

                   Với p=6k+5 ta có:p3+2=(6k+5)3+2=6k3+125+2=6k3+127(vì UCLN(6k3;127)=1=>6k3+127 là số nguyên tố nên nhận)

                                                          Vậy với p=6k+5 thì p3+2 cũng là số nguyên tố.

Bình luận (0)
DK
3 tháng 10 2024 lúc 20:15

Dễ

 

Bình luận (0)
TH
Xem chi tiết
NT
Xem chi tiết
H24
15 tháng 2 2022 lúc 20:41

\(2xy+x-2y=4\\ \Rightarrow x\left(2y+1\right)-2y-1=4-1\\ \Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\\ \Rightarrow\left(x-1\right)\left(2y+1\right)=3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,2y+1\in Z\\x-1,2y+1\inƯ\left(3\right)\end{matrix}\right.\)

Ta có bảng:

x-1-1-313
2y+1-3-131
x0-224
y-2-110

Vậy \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(-2;-1\right);\left(2;1\right);\left(4;0\right)\right\}\)

 

Bình luận (0)
TT
Xem chi tiết
QN
Xem chi tiết
BM
Xem chi tiết
NN
Xem chi tiết
LA
7 tháng 9 2016 lúc 16:34

Do p nguyên tố nên:

+) Xét p = 2 ta có: p2 + 8 = 22 + 8 = 12 là hợp số (loại)

+) Xêt p = 3 ta có: p2 + 8 = 32 + 8 = 17 là nguyên tố (chọn)

+) Xét p > 3  => p = 3k + 1  hoặc  p = 3k + 2

Khi p = 3k + 1  => p2 + 8 = (3k + 1)2 + 8 = 9k2 + 3k + 1 + 8 = 9k2 + 3k + 9 = 3(3k2 + k + 3) chia hết cho 3  => p2 + 8 là hợp số (loại) 

Khi p = 3k + 2  => p2 + 8 = (3k + 2)2 + 8 = 9k2 + 6k + 4 + 8 = 9k2 + 6k + 12 = 3(3k2 + 2k + 4) chia hết cho 3  => p2 + 8 là hợp số (loại) 

=> p = 3 để p và p2 + 8 là nguyên tố 

Khi đó: p2 + 2 = 32 + 2 = 11 là nguyên tố

Vậy nếu p và p2 + 8 là nguyên tố thì p2 + 2 cũng nguyên tố.

Bình luận (0)
NN
Xem chi tiết
DP
28 tháng 8 2024 lúc 21:28

p=3

Bình luận (0)
NN
Xem chi tiết
LS
Xem chi tiết
GV
3 tháng 10 2017 lúc 17:32

Nếu n > 3 thì vì n là nguyên tố nên n chia cho 3 dư 1 hoặc 2 => \(n=3k\pm1\) 

Suy ra \(n^2+2=9k^2+3\) chia hết cho 3. Trái với giả thiết \(n^2+2\) là số nguyên tố.

Vậy n chỉ có thể bằng 3. Khi đó \(n;n^2+2;n^3+2\) lần lượt là \(3;11;29\) đều là số nguyên tố.

Bình luận (0)
CK
25 tháng 3 2020 lúc 19:19

etetrttymrturfgdfeeeyeeegguthkxgdzyyyzrzeeerrttytjjmetetetetethehtemeteteetu,o;/o

7lkyuxrxytwtqtwyer

Bình luận (0)
 Khách vãng lai đã xóa
NL
28 tháng 3 2020 lúc 9:28

Nếu n > 3 vì n là số nguyên tố nên n chia cho 3 dư 1 hoặc =>n= 3k+1 hoặc n=3k-1

=> n2 +2= 9k2 + 3 chia hết cho 3 (vô lí với đề bài n2 +2 là số nguyên tố)

Vậy n=3 KHI đó n :n+ 2 :n3 + 2 lần 3;11;29 đều là số nguyên tố

Bình luận (0)
 Khách vãng lai đã xóa