Những câu hỏi liên quan
NV
Xem chi tiết
NT
Xem chi tiết
H24
28 tháng 4 2017 lúc 19:34

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(4A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)

\(4A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(4A=1-\frac{1}{101}=\frac{100}{101}\)

\(A=\frac{100}{101.4}=\frac{25}{101}\)

Bình luận (0)
ST
28 tháng 4 2017 lúc 20:02

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+...+\frac{1}{198.101}\)

\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)

\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(4A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(4A=1-\frac{1}{101}=\frac{100}{101}\)

\(A=\frac{100}{101}:4=\frac{25}{101}\)

Bình luận (0)
OC
22 tháng 8 2019 lúc 21:09

đáp số 

25/101

hok tốt

Bình luận (0)
ND
Xem chi tiết
NG
Xem chi tiết
ND
Xem chi tiết
HD
Xem chi tiết
MH
7 tháng 4 2018 lúc 21:53

=>A:1/2=1/1x3+1/3x5+1/5x7+...+1/99x101

=>2a=1/2(2/1x3+2/3x5+...+2/99x101)

từ đây tự làm

Bình luận (0)
PD
1 tháng 5 2018 lúc 20:57

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(\Rightarrow2A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(\Rightarrow2A=\frac{1}{2}\left(1-\frac{1}{101}\right)\)

\(\Rightarrow4A=\frac{100}{101}\)

\(\Leftrightarrow A=\frac{100}{101}.\frac{1}{4}=\frac{4.25}{101.4}=25< 26\)

Bình luận (0)
OT
Xem chi tiết
OT
23 tháng 5 2016 lúc 17:49

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(A=2.\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)

\(A=2.\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)

\(A=\frac{1}{2}.\frac{50}{201}\)

\(A=\frac{25}{101}\)

Bình luận (0)
H24
23 tháng 5 2016 lúc 18:05

=25/101

k cho to nhe

Bình luận (0)
NK
23 tháng 5 2016 lúc 18:17

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(A=2.\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)

\(A=2.\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)

\(A=\frac{1}{2}.\frac{50}{201}\)

\(A=\frac{25}{101}\)

Bình luận (0)
DN
Xem chi tiết
HL
26 tháng 12 2016 lúc 19:56

xét p=3k,xét p=3k+1,p=3k+2,rồi thay vào

Bình luận (0)
TD
26 tháng 12 2016 lúc 19:57

+) nếu p = 2 

=> p + 14 = 2 + 14 = 16 là hợp số ( loại )

+) nếu p = 3

=> p + 14 = 3 + 14 = 17 là số nguyên tố ( loại )

=> p + 28 = 3 + 28 = 31 là số nguyên tố ( loại )

nếu p > 3 thì có 2 dạng : 3k + 1 và 3k + 2

+) nếu p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 là hợp số ( loại )

+ ) nếu p = 3k + 2 => p + 28 = 3k + 30 chia hết cho 3 là hợp số ( loại )

vậy  số nguyên tố p cần tìm là 3

Bình luận (0)
MT
Xem chi tiết
QD
23 tháng 5 2016 lúc 9:12

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{14.9}+...+\frac{1}{198.101}\)

\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)

Ta thấy : thừa số thứ nhất ở mẫu của phân số liền sau = thừa số thứ nhất của phân số liền trước + 4

Thừa số thứ hai ở mẫu của phân số liền sau = thừa số thứ hai của phân số liền trước + 2 

\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(4A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{101-99}{99.101}\)

4A= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)

\(A=\frac{100}{101.4}=\frac{25}{101}\)

Bình luận (0)
BT
23 tháng 5 2016 lúc 9:12

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(A=2\times\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)

\(A=2\times\frac{1}{4}\times\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)

\(A=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{202}\right)\)

\(A=\frac{1}{2}\times\frac{50}{101}\)

\(A=\frac{25}{101}\)

Bình luận (0)
PD
23 tháng 5 2016 lúc 9:13

1/2A=1/2*3*2+1/6*5*2+1/10*7*2+...+1/198*101*2

1/2A=1/2*6+1/6*10+1/10*14+...+1/198*202

4/2A=4/2*6+4/6*10+4/10*14+...+4/198*202

2A=1/2-1/6+1/6-1/10+1/10-1/14+...+1/198-1/202

2A=1/2-1/202

2A=100/202

A=50/202

 

 

 

 

 

 

 

 

 

 

 

 

Bình luận (0)