Lập phương trình của mặt phẳng \(\left(\alpha\right)\) đi qua điểm \(M\left(1;2;3\right)\) và cắt ba tia \(Ox;Oy;Oz\) lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất ?
Viết phương trình của mặt phẳng \(\left(\alpha\right)\) đi qua điểm \(M\left(2;-1;2\right)\), song song với trục Oy và vuông góc với mặt phẳng \(\left(\alpha\right):2x-y+3z+4=0\)
Lập phương trình mặt phẳng \(\left(\alpha\right)\) đi qua hai điểm \(A\left(0;1;0\right);B\left(2;3;1\right)\) và vuông góc với mặt phẳng \(\left(\beta\right):x+2y-z=0\) ?
Trong không gian với hệ tọa độ Oxyz, cho A(1;0;1) và B(-1;-3) và mặt phẳng \(\left(\alpha\right):x+2y+3z+3=0\), lập phương trình đường thẳng\(\left(\beta\right)\) đi qua 2 điểm A, B và vuông góc với mặt phẳng \(\left(\alpha\right)\)
\(\overrightarrow{n}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(1;-2;1\right)\) là một vectơ pháp tuyến của \(\left(\beta\right)\)
Mặt phẳng \(\beta\) đi qua A có vectơ pháp tuyến \(\overrightarrow{n}=\left(1;-2;1\right)\) có phương trình \(x-2y+z-2=0\)
Cho x, y là các số thỏa mãn \(x^2+y^2+xy=3\Leftrightarrow\left(x+y\right)^2-3=xy\)
Vì \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow\left(x+y\right)^2-3\le\frac{\left(x+y\right)^2}{4}\)
\(\Leftrightarrow\left(x-y\right)^2\le4\)
Trong không gian Oxyz, lập phương trình mặt phẳng \(\left(\alpha\right)\) đi qua hai điểm \(A\left(1;0;1\right);B\left(5;2;3\right)\) và vuông góc với mặt phẳng \(\left(\beta\right):2x-y+z-7=0\) ?
Trong không gian Oxyz, cho điểm \(D\left(-3;1;2\right)\) và mặt phẳng \(\left(\alpha\right)\) đi qua ba điểm \(A\left(1;0;11\right),B\left(0;1;10\right),C\left(1;1;8\right)\)
a) Viết phương trình đường thẳng AC
b) Viết phương trình tổng quát của mặt phẳng \(\left(\alpha\right)\)
c) Viết phương trình mặt cầu (S) tâm D, bán kính r = 5. Chứng minh mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu (S)
Trong không gian Oxyz
a) Lập phương trình của các mặt phẳng tọa độ \(\left(Oxy\right),\left(Oyz\right),\left(Oxz\right)\) ?
b) Lập phương trình của các mặt phẳng đi qua điểm \(M\left(2;6;-3\right)\) và lần lượt song song với các mặt phẳng tọa độ ?
Giải:
a) Mặt phẳng (Oxy) qua điểm O(0 ; 0 ; 0) và có vectơ pháp tuyến (0 ; 0 ; 1) và là vectơ chỉ phương của trục Oz. Phương trình mặt phẳng (Oxy) có dạng:
0.(x - 0) +0.(y - 0) +1.(z - 0) = 0 hay z = 0.
Tương tự phương trình mặt phẳng (Oyz) là : x = 0 và phương trình mặt phẳng (Ozx) là: y = 0.
b) Mặt phẳng (P) qua điểm M(2; 6; -3) song song với mặt phẳng Oxy nhận (0 ; 0 ; 1) làm vectơ pháp tuyến. Phương trình mặt phẳng (P) có dạng: z +3 = 0.
Tương tự mặt phẳng (Q) qua M và song song với mặt phẳng Oyz có phương trình x - 2 = 0.
Mặt phẳng qua M song song với mặt phẳng Oxz có phương trình y - 6 = 0.
Lập phương trình của mặt phẳng \(\left(\alpha\right)\) đi qua điểm \(M\left(3;-1;-5\right)\) đồng thời vuông góc với hai mặt phẳng :
\(\left(\beta\right):3x-2y+2z+7=0\)
\(\left(\gamma\right):5x-4y+3z+1=0\)
Cho tứ diện có các đỉnh là \(A\left(5;1;3\right);B\left(1;6;2\right);C\left(5;0;4\right);D\left(4;0;6\right)\)
a) Hãy viết phương trình mặt phẳng (ABC)
b) Hãy viết phương trình mặt phẳng \(\left(\alpha\right)\) đi qua điểm D và song song với mặt phẳng (ABC)
Trong không gian Oxyz, cho 3 điểm \(A\left(1;0;0\right);B\left(1;1;1\right);C\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)\)
a) Viết phương trình tổng quát của mặt phẳng \(\left(\alpha\right)\) đi qua O và vuông góc với OC
b) Viết phương trình mặt phẳng \(\left(\beta\right)\) chứa AB và vuông góc với \(\left(\alpha\right)\)
Trong không gian Oxyz cho 2 điểm A(3;1;1); B(2;-1;2) và mặt phẳng \(\left(\alpha\right):2x-y-2z+1=0\)
a) Viết phương trình mặt phẳng (P) qua 2 điểm A, B và vuông góc với mặt phẳng\(\left(\alpha\right)\)
b) Viết phương trình mặt cầu (S) tâm A và tiếp xúc với mặt phẳng \(\left(\alpha\right)\)
\(\overrightarrow{AB}=\left(-1;-2;1\right)\); \(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)
Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)
\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)
Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)