Những câu hỏi liên quan
SK
Xem chi tiết
NH
26 tháng 5 2017 lúc 15:56

Hình giải tích trong không gian

Bình luận (0)
SK
Xem chi tiết
NH
26 tháng 5 2017 lúc 16:27

Hình giải tích trong không gian

Bình luận (0)
DN
Xem chi tiết
NT
18 tháng 4 2016 lúc 16:22

\(\overrightarrow{n}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(1;-2;1\right)\) là một vectơ pháp tuyến của \(\left(\beta\right)\)

Mặt phẳng \(\beta\) đi qua A có vectơ pháp tuyến \(\overrightarrow{n}=\left(1;-2;1\right)\) có phương trình \(x-2y+z-2=0\)

Cho x, y là các số thỏa mãn \(x^2+y^2+xy=3\Leftrightarrow\left(x+y\right)^2-3=xy\)

Vì \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow\left(x+y\right)^2-3\le\frac{\left(x+y\right)^2}{4}\)

                       \(\Leftrightarrow\left(x-y\right)^2\le4\)

 

Bình luận (0)
SK
Xem chi tiết
HB
27 tháng 4 2017 lúc 17:54

Hỏi đáp Toán

Bình luận (0)
SK
Xem chi tiết
NH
22 tháng 5 2017 lúc 15:34

Ôn tập chương III

Bình luận (0)
SK
Xem chi tiết
KH
1 tháng 4 2017 lúc 14:34

Giải:

a) Mặt phẳng (Oxy) qua điểm O(0 ; 0 ; 0) và có vectơ pháp tuyến (0 ; 0 ; 1) và là vectơ chỉ phương của trục Oz. Phương trình mặt phẳng (Oxy) có dạng:

0.(x - 0) +0.(y - 0) +1.(z - 0) = 0 hay z = 0.

Tương tự phương trình mặt phẳng (Oyz) là : x = 0 và phương trình mặt phẳng (Ozx) là: y = 0.

b) Mặt phẳng (P) qua điểm M(2; 6; -3) song song với mặt phẳng Oxy nhận (0 ; 0 ; 1) làm vectơ pháp tuyến. Phương trình mặt phẳng (P) có dạng: z +3 = 0.

Tương tự mặt phẳng (Q) qua M và song song với mặt phẳng Oyz có phương trình x - 2 = 0.

Mặt phẳng qua M song song với mặt phẳng Oxz có phương trình y - 6 = 0.

Bình luận (0)
SK
Xem chi tiết
NH
26 tháng 5 2017 lúc 16:02

Hình giải tích trong không gian

Bình luận (0)
SK
Xem chi tiết
NH
26 tháng 5 2017 lúc 16:32

Hình giải tích trong không gian

Bình luận (0)
SK
Xem chi tiết
NH
22 tháng 5 2017 lúc 16:14

Ôn tập chương III

Bình luận (0)
NH
Xem chi tiết
NN
14 tháng 4 2016 lúc 22:12

\(\overrightarrow{AB}=\left(-1;-2;1\right)\)\(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)

Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)

\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)

Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)

Bình luận (0)