So sánh A=(2017^2016+2016^2016)^2017
B=(2017^2017+2016^2017)^2016
So sánh A=\(\frac{2017^{2017}}{1+2017+2017^2+....+2017^{2016}}\)
B=\(\frac{2016^{2017}}{1+2016+2016^2+...+2016^{2016}}\)
Đặt C = 1 + 2017 + 20172 + ... + 20172016 ; D = 1 + 2016 + 20162 + ... + 20162016
Ta có : 2017C = 2017 + 20172 + 20173 + ... + 20172017
=> 2016C = 2017C - C = 20172017 - 1\(\Rightarrow C=\frac{2017^{2017}-1}{2016}\)
2016D = 2016 + 20162 + 20163 + ... + 20162017
=> 2015D = 2016D - D = 20162017 - 1\(\Rightarrow D=\frac{2016^{2017}-1}{2015}\)
\(\Rightarrow A=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2017^{2017}.2016}{2017^{2017}-1}\);\(B=\frac{2016^{2017}}{\frac{2016^{2017}-1}{2015}}=\frac{2016^{2017}.2015}{2016^{2017}-1}\)
Ta có : 20172017.2016.(20162017 - 1) - 20162017.2015.(20172017 - 1)
= 20172017.20162017.2016 - 20172017.2016 - 20172017.20162017.2015 + 20162017.2015
= 20172017.20162017 - 20172017.2016 + 20162017.2015
= 20172017.(20162017 - 2016) + 20162017.2015 > 0
=> A > B
Ta có
\(A=1:\frac{1+2017+2017^2+...+2017^{2016}}{2017^{2017}}\)
\(B=1:\frac{1+2016+2016^2+...2016^{2016}}{2016^{2017}}\)
\(A=1:\left(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}\right)\)
\(B=1:\left(\frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\right)\)
Có 20172017>20162017 ; 20172016>20162016 ; 20172015>20162015;..... ; 2017>2016
=> \(\frac{1}{2017^{2017}}< \frac{1}{2016^{2017}};\frac{1}{2017^{2016}}< \frac{1}{2016^{2016}};\frac{1}{2017^{2015}}< \frac{1}{2016^{2015}};...;\frac{1}{2017}< \frac{1}{2016}\)
=> \(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}< \frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\)
=> A>B ( vì số bị chia và số chia của A và B đều dương, số bị chia của cả 2 đều là 1, cái nào có số chia nhỏ hơn thì lớn hơn)
Xét biểu thức \(N=1+k+k^2+k^3+...+k^n\) (1) với k là số tự nhiên lớn hơn 1
Ta có \(k.N=k+k^2+k^3+k^4+...+k^{n+1}\) (2)
Lấy (2) - (1) ta được:
\(\left(k-1\right)N=\left(k+k^2+k^3+k^4+...+k^{n+1}\right)-\left(1+k+k^2+k^3+...+k^n\right)=k^{n+1}-1\)
Suy ra \(N=\frac{k^{n+1}-1}{k-1}\)
Áp dụng với k = 2017; n = 2016 ta được \(1+2017+2017^2+...+2017^{2016}=\frac{2017^{2017}-1}{2016}\)
Áp dụng với k = 2016; n = 2016 ta được \(1+2016+2016^2+...+2016^{2016}=\frac{2016^{2017}-1}{2015}\)
\(A=\frac{2017^{2017}}{1+2017+2017^2+...+2017^{2016}}=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2016.2017^{2017}}{2017^{2017}-1}>1\)
Tương tự \(B=\frac{2015.2016^{2017}}{2016^{2017}-1}>1\)
Mặt khác: Tử số A > tử số B; mẫu A > mẫu B => A < B.
so sánh 2 p/s A=2015/2016+2016/2017+2017/2018 va B=2015+2016+2017/2016+2017+2018
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
so sánh : A= 2015/2016 + 2016/2017 + 2017/2018 và B= 2015+2016+2017 / 2016+2017+2018
A=2015/2016+2016/2017+2017/2018>2015/2018+2016/2018+2017/2018
=6048/2018>1
B=2015+2016+2017/2016+2017+2018=6048/6051<1
=>A>B
so sánh : A= 2015/2016 + 2016/2017 + 2017/2018 và B= 2015+2016+2017 / 2016+2017+2018
Có: B = 2015 + 2016 + 2017/2016 + 2017 + 2018
B= 2015 / (2015 + 2016+2017) + 2016/(2016+2017+2018) + 2017/(2016 + 2017 + 2018)
vì 2015/2016 > 2015/(2016 + 2017+2018) ; 2016/2017>2016/(2016+2017+2018) ; 2017/2018 > 2017/(2016+2017+2018)
=> A>B
có ai là ARMY ko nếu là ARMY thì mọi người cày view chưa
so sánh : A= 2015/2016 + 2016/2017 + 2017/2018 và B= 2015+2016+2017 / 2016+2017+2018
So sánh A= \(\frac{2017^{2017}}{1+2017+2017^2+...+2017^{2016}}\)
B= \(\frac{2016^{2017}}{1+2016+2016^2+...+2016^{2016}}\)
SO SÁNH:
A = \(\frac{2017^{2017}}{1+2017+2017^2+...+2017^{2016}}\)
B = \(\frac{2016^{2017}}{1+2016+2016^2+...+2016^{2016}}\)
So sánh A và B:
A=2015/2016+2016/2017+2017/2018
B=2015+2016+2017/2016+2017+2018
giúp mk nha!!!!!!!
A<B(2015/2016<2015;2016/2017<2016;2017/2018<2017)
so sánh A=(17^2016+16^2016)^2017 và B=(17^2017+16^2017)^2016
SO SÁNH A VÀ B:
A = \(\frac{2017^{2016}}{1+2017+2017^2+...+2017^{2016}}\)
B = \(\frac{2016^{2017}}{1+2016+2016^2+...+2016^{2016}}\)
A>B
Vì 2017>2016
Nhớ k mình nha