Tìm x,y biết:
/x2-1/ + 2 = \(\dfrac{6}{\left(y+1\right)^2+3}\)
/..../ là giá trị tuyệt đối.
Bài 1 : Tìm các số nguyên x , y biết :
a, x = 6y ; giá trị tuyệt đối của x - giá trị tuyệt đối của y = 25
b, $\left(x+1\right)^2+\left(y+1\right)^2+\left(x-y\right)^2=2$(x+1)2+(y+1)2+(x−y)2=2
c, $\left(x^2-3\right)$(x2−3)chia hết cho ( x + 5 )
Bài 1 : Tìm các số nguyên x , y biết : ( Trình bày rõ =>2 likes )
a, x = 6y ; *giá trị tuyệt đối x * - *giá trị tuyệt đối y* = 25
b, \(\left(x+1\right)^2+\left(y+1\right)^2+\left(x-y\right)^2=2\)
Bài 1 : Tìm các số nguyên x , y biết : ( Trình bày rõ =>2 likes )
a, x = 6y ; *giá trị tuyệt đối x * - *giá trị tuyệt đối y* = 25
b, \(\left(x+1\right)^2+\left(y+1\right)^2+\left(x-y\right)^2=2\)
Bài 1 : Tìm các số nguyên x , y biết :
a, x = 6y ; giá trị tuyệt đối của x - giá trị tuyệt đối của y = 25
b, \(\left(x+1\right)^2+\left(y+1\right)^2+\left(x-y\right)^2=2\)
c, \(\left(x^2-3\right)\)chia hết cho ( x + 5 )
Bài 1 : Tìm các số nguyên x , y biết :
a, x = 6y ; giá trị tuyệt đối của x - giá trị tuyệt đối của y = 25
b, \(\left(x+1\right)^2+\left(y+1\right)^2+\left(x-y\right)^2=2\)
c, \(\left(x^2-3\right)\)chia hết cho ( x + 5 )
Bài 1 : Tìm các số nguyên x , y biết : ( Trình bày rõ => 2 likes )
a, x = 6y ; *giá trị tuyệt đối của x* - *giá trị tuyệt đối của y* = 25
b, \(\left(x+1\right)^2+\left(y+1\right)^2+\left(x-y\right)^2=2\)
c, \(\left(x^2-3\right)\)chia hết cho ( x + 5 )
giải phương trình
\(\left(\dfrac{1}{x}+3\right)+\left(\dfrac{1}{x}-3\right)=1+\left(\dfrac{1}{x^2}-9\right)\)( toàn bộ dấu ngoặc đều là dấu giá trị tuyệt đối )
`|1/x+3|+|1/x-3|=1+|1/x^2-9|`
`<=>|1/x+3|+|1/x-3|=|(1/x-3)(1/x+3)|+1`
`<=>|1/x+3|-1=|(1/x-3)(1/x+3)|-|1/x-3|`
`<=>|1/x+3|-1=|(1/x-3)|(|1/x+3|-1)`
`<=>(|1/x+3|-1)(|1/x-3|-1)=0`
`+)|1/x+3|=1`
`<=>` $\left[ \begin{array}{l}\dfrac1x+3=1\\\dfrac1x+3=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\dfrac1x+2=0\\\dfrac1x+4=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}2x+1=0\\4x+1=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=-\dfrac12\\x=-\dfrac14\end{array} \right.$
`+)|1/x-3|=1`
`<=>` $\left[ \begin{array}{l}\dfrac1x-3=1\\\dfrac1x-3=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\dfrac1x-4=0\\\dfrac1x-2=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}4x-1=0\\2x-1=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=\dfrac12\\x=\dfrac14\end{array} \right.$
Vậy `S={1/2,-1/2,1/4,-1/4}`
Tìm x
\(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left[x+y-z\right]=0\)
*Chú Ý: [x+y-z] có nghĩa là giá trị tuyệt đối của x+y-z
Mình ko bít viết dấu giá trị tuyệt đối nên phải viết như vậy
Biết (x2+ 3)2 - 5 = \(\dfrac{4}{\left|y-2\right|+1}\). Giá trị của x + y bằng
A. 0
B. 3
C. 1
D. 2
Biết \(\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}\) và a + b +c = 14. Giá trị của c bằng
A. 9
B. 8
C. 6
D. 7
Câu 2:
\(\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{c+a}{8}=\dfrac{2\left(a+b+c\right)}{6+7+8}=\dfrac{28}{21}=\dfrac{4}{3}\\ \Rightarrow\left\{{}\begin{matrix}a+b=\dfrac{4}{3}\cdot6=8\\b+c=\dfrac{4}{3}\cdot7=\dfrac{28}{3}\\c+a=\dfrac{4}{3}\cdot8=\dfrac{32}{3}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a=14-\dfrac{28}{3}=\dfrac{14}{3}\\b=14-\dfrac{32}{3}=\dfrac{10}{3}\\c=14-8=6\end{matrix}\right.\)
Vậy chọn C